Preface

This document is one in a series of publications known as the **ETDE/INIS Joint Reference Series**. It defines the subject categories and provides the scope descriptions to be used by national and regional centres for categorization of the nuclear literature for the preparation of INIS input, and for categorization of the energy technology literature for the preparation of ETDE input. Together with volumes of the INIS Reference Series and ETDE/INIS Joint Reference Series it defines the rules, standards and practices and provides the authorities to be used in the International Nuclear Information System and the Energy Technology Data Exchange. A list of the volumes published in the INIS Reference Series and ETDE/INIS Joint Reference Series can be found at the end of this publication.

At the 27th Consultative Meeting of INIS Liaison Officers (Vienna, Austria, 25-27 May 1999), it was recommended to adopt a simplified subject category scheme, common to the INIS and ETDE databases, which was prepared by a joint INIS/ETDE working group. The corresponding scope descriptions prepared by the same working group were endorsed by the 5th INIS/ETDE Joint Technical Committee meeting, Knoxville, TN, USA, 28-29 October 1999.

At the 11th Joint INIS/ETDE Technical Committee Meeting, 6-8 November 2007, Vienna, Austria, a new working group was created to review the INIS/ETDE subject categories. Members of the working group included the INIS Secretariat, ETDE OA, Germany, Japan and Switzerland. The objectives of this working group were:

- Review the existing subject categories to include newer concepts and/or areas of research and development
- Make the "ETDE only" categories available for INIS
- Consider the introduction of new categories

Discussion among the working group members led to the introduction of four new subject categories:

- **S77 NANOSCIENCE AND NANOTECHNOLOGY**
- **S79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY**
Introduction

This ETDE/INIS Joint Reference Series document is intended to serve two purposes:

- to define the subject scope of the International Nuclear Information System (INIS) and the Energy Technology Data Exchange (ETDE)
- to define the subject classification scheme of INIS and ETDE.

Each category is identified by a category code consisting of three alphanumeric characters. A scope description is given for each subject category. The scope of INIS and ETDE is the sum of the scopes of all the categories respectively.

With most categories cross references are provided to other categories where appropriate. Cross references should be of assistance in finding the appropriate category; in fact, by indicating topics that are excluded from the category in question, the cross references help to clarify and define the scope of the category to which they are appended.

A Subject Index is included as an aid to subject classifiers, but it is only an aid and not a means for subject classification. It facilitates the use of this document, but is no substitute for the description of the scope of the subject categories. Index-based subject categorization is likely to be wrong and must be avoided.

Subject classifiers, who are expected to be subject specialists at INIS and ETDE inputting centres, are requested to identify the significant topics of each item of literature and to report the item only if it contains significant information that falls within the subject scope of INIS or ETDE. The main topic (from the "nuclear science" point of view for INIS and from the
"energy technology" point of view for ETDE) is the basis for determining the primary subject category. The *INIS: Guide to Bibliographic Description (IAEA-INIS-1)* requires the assignment of a primary subject category to each record (in Tag 008). The primary category should be the one for which the scope description encompasses the main INIS/ETDE topic discussed in the piece of literature. If there are significant secondary topics discussed in the piece of literature that fall within the scope description of a category or categories other than the one relevant to the main topics of the paper, the rules permit the assignment of one or more secondary categories for the piece of literature. Furthermore, in order to create subsets of the database containing references to literature that might be useful in a particular area, it has been found advantageous in certain cases to additionally assign a secondary category to indicate the field of application or area of usefulness of the information contained in the piece of literature. This is also permitted under INIS/ETDE rules. Although their number is not limited, **more than one or two secondary categories rarely should be needed.**

Table of Contents

FrontPage
Preface
Introduction
S01 Coal, lignite, and peat
S02 Petroleum
S03 Natural gas
S04 Oil shales and tar sands
S07 Isotopes and radiation sources
S08 Hydrogen
S09 Biomass fuels
S10 Synthetic fuels
S11 Nuclear fuel cycle and fuel materials
S12 Management of radioactive wastes, and non-radioactive wastes from nuclear facilities
S13 Hydro energy
S14 Solar energy
S15 Geothermal energy
S16 Tidal and wave power
S17 Wind energy
S20 Fossil-fueled power plants
S21 Specific nuclear reactors and associated plants
S22 General studies of nuclear reactors
S24 Power transmission and distribution
S25 Energy storage
S29 Energy planning, policy and economy
S30 Direct energy conversion
S32 Energy conservation, consumption, and utilization
S33 Advanced propulsion systems
S36 Materials science
S37 Inorganic, organic, physical and analytical chemistry
S38 Radiation chemistry, radiochemistry and nuclear chemistry
S42 Engineering
S43 Particle accelerators
S01 Coal, lignite, and peat

Includes all topics in the field of coal and coal products, including lignite and peat, such as reserves, geology and exploration; underground and surface mining (including mountain top removal); preparation (sizing, crushing, washing, flotation, agglomeration, blending, briquetting); processing (purification and upgrading, gasification, liquefaction, hydrogenation, pyrolysis, carbonization); products and by-products; properties and composition; combustion; transport, handling and storage; waste management; environmental aspects; health and safety; legislation and regulations; economic, industrial, and business aspects.

S02 Petroleum

Includes all topics in the field of petroleum, such as reserves, geology, and exploration; drilling and production; processing; products and by-products; properties and composition; combustion; transport, handling, and storage; waste management; environmental aspects; health and safety; legislation and regulations; economic, industrial, and business aspects.

S03 Natural gas

Includes all topics in the field of natural gas including liquified natural gas, such as reserves, geology, and exploration; drilling, production, and processing; products and by-products (e.g., LPG); properties and composition; combustion;
transport, handling, and storage; waste management; environmental aspects; health and safety; legislation and regulations; economic, industrial, and business aspects.

S04 Oil shales and tar sands

Includes all topics in the field of oil shales and tar sands, such as reserves, geology, and exploration; drilling, fracturing, and mining; oil production, recovery, and refining; products and by-products; properties and composition; combustion; transport, handling, and storage; waste management, environmental aspects; health and safety; legislation and regulations; economic, industrial, and business aspects.

S07 Isotopes and radiation sources

Physical methods of isotope separation and enrichment for both radioactive and stable isotopes (except uranium for the nuclear fuel cycle), heavy water production, and all industrial processes for the separation of deuterium from hydrogen. Design and performance of separation equipment such as gas centrifuges and separation nozzles. Design, construction, and maintenance of facilities and equipment for heavy water production.

Design, fabrication, and operation of isotopic sources of nuclear radiation such as neutron sources, gamma sources, etc., (including isotopic x-ray sources) and associated facilities. Applications of nuclear techniques and radiations, accelerated particles, radioisotopes, and fission products in industry for measurement and control, e.g., thickness measurement. Applications in radiation processing, including waste treatment. Advances in tracer techniques when no specific application is indicated.

Radiation source metrology, including radiation source calibration and standardization; units for radiation and activity measurements; activity measurement of radiation sources and calculation and measurement of dose distributions from radiation sources.

Isotopic power supplies using separated radioisotopes or mixed fission products as sources of electric, propulsive, or thermal energy.

Environmental aspects (siting studies; effluent generation, treatment, and release; accident analysis); health and safety aspects; legislation and regulations; and economic, industrial, and business aspects of the use of isotopes and radiation sources.

For:

- Uranium separation and enrichment use **S11**
- chemical separation and preparation of radioisotopes use **S38**
- analytical procedures using radioisotopes use **S38**
- use of radioisotopes in vaccine production and food processing use **S60**
- use of radioisotopes for radio sterilization in medicine use **S60**

S08 Hydrogen

Includes all topics in the field of hydrogen, such as production (electrolysis, thermochemical processes, steam reformer processes, water gas processes, Bosch process, biosynthesis and photochemical processes, steam-iron process, partial oxidation processes, coal gasification); properties and composition; combustion; storage (chemisorption, underground, and cryogenic storage), transport, and handling; products and by-products; waste management; environmental aspects; health
and safety; legislation and regulations; economic, industrial, and business aspects.

S09 Biomass fuels

Includes all topics in the field of biomass fuels (e.g. crops and wastes used directly as fuels, as e.g., wood, straw, municipal wastes or indirectly used as fuels, such as biogas from sanitary landfills, or as feedstocks, such as switchgrass). Aspects include resources; production; processing; products and by-products; properties and composition; combustion; storage, transport and handling; waste management; environmental aspects; health and safety; legislation and regulations; economic, industrial, and business aspects.

S10 Synthetic fuels

Includes all fuels produced by chemical synthesis, e.g., inorganic hydrogen compound fuels, town gas, etc. Aspects include production; properties and composition; combustion; products and by-products; storage, transport and handling; waste management; environmental aspects; health and safety; legislation and regulations; economic, industrial, and business aspects.

S11 Nuclear fuel cycle and fuel materials

All out-of-reactor aspects of the nuclear fuel cycle except waste processing, storage, and disposal

Geology, mineralogy, petrogenesis, properties, resources, and reserves of uranium and thorium minerals and ores. Identification and prospecting of deposits. All aspects of mining and recovery of uranium and thorium from seawater and other waters, including process design, operation, performance, and chemical engineering of plants for this processing.

Feed processing (chemical processing of ores for recovery of uranium or thorium), including process design, performance, and operation of all extraction, conversion, or reduction steps, as well as design and chemical engineering of associated plants.

Processes for the industrial-scale separation of uranium isotopes and uranium enrichment, such as gaseous diffusion, ultracentrifugation, and laser separation, as well as design, construction, operation, maintenance and safety aspects of facilities and equipment for uranium separation and enrichment.

Reactor fuel properties, production, and fabrication.

Reprocessing of reactor fuels, including analytical control, chemical separation, solvent studies, and plant and process design, performance, and operation.

Handling, transport and interim storage of fresh and spent reactor fuels.

Environmental aspects (siting studies; effluent generation, treatment, and release; accident analysis); health and safety aspects; legislation and regulations; and economic, industrial, and business aspects of the nuclear fuel cycle.

For:
- fuel element design, assembly, and performance
use S22
- fuel handling procedures at reactors
use S22
- fuel requirements
see S21, S22
S12 Management of radioactive wastes, and non-radioactive wastes from nuclear facilities

Studies related to methods for the management, processing, storage, transport, or disposal of radioactive wastes, as well as non-radioactive wastes generated by energy facilities

Radioactive waste processing for concentration, decontamination, or fission product recovery, including transmutation technology; tritium processing, containment, and recovery; radioactive waste treatment plants, structures, and equipment.

Methods, equipment, and treatment plants for the processing of non-radioactive wastes from nuclear facilities.

All methods for storage (including ultimate storage) and disposal of radioactive and non-radioactive wastes, e.g. tank storage, salt-mine storage, land burial, or sea disposal.

Seismological, geological, hydrological, meteorological and climatic studies of waste treatment plant sites and of waste disposal sites

Legal aspects of waste treatment, storage, and disposal, including the national and international transport of wastes.

For:

Reprocessing of spent reactor fuels use S11

S13 Hydro energy

Includes all aspects of hydroelectric power plants, such as retrofitting existing dams for power, hydroelectric-dam safety and environmental studies, and generating equipment. Also includes the extraction of energy from the Florida Current, Gulf Stream, or undammed, free-flowing streams (hydrokinetic power). Aspects include resources and availability; site geology and meteorology; plant design and operation; power-conversion systems; environmental aspects; health and safety; legislation and regulations; economic, industrial, and business aspects.

For:

energy derived from the salinity gradient in the oceans use S14
energy derived from the temperature difference between deep and surface water use S14
S14 Solar energy

Includes conversion of solar radiation to useful amounts of electric energy, use of solar energy for heating and cooling, or any other use of solar energy that might contribute to the total energy budget. All technical aspects of the design, research and development, manufacture, testing, and operation of solar cells and solar collectors are included along with photovoltaic power systems, solar thermal power systems, ocean thermal energy conversion (OTEC) systems based on the temperature difference between deep and surface water, power systems based on salinity gradients, and solar thermal utilization (space heating and cooling; water heating; agricultural and industrial process heat for e.g. crop drying, food dehydration). Also includes materials with indicated utility in solar cells or solar converters. Aspects include resources and availability; environmental aspects; solar energy conversion (photovoltaic, thermionic, thermoelectric, photochemical, photobiological and thermochemical conversion); solar energy storage; health and safety; legislation and regulations; economic, industrial, and business aspects.

Note: For solar energy storage, category S25 should also be assigned.

For:
- energy derived from undammed, free-flowing streams or ocean currents use S13
- energy derived from the (quasi)-periodic movements of waves and tides use S16
- energy derived from wind and similar air movements use S17

S15 Geothermal energy

Includes all aspects of geothermal resources, such as availability; geology and hydrology of geothermal systems, including low-depth, mid-depth and high-depth geothermal systems, and use of tunnel water; geothermal exploration and exploration technology; products and by-products; geothermal power plants and components; geothermal engineering (drilling technology, well hardware, fluid transmission; corrosion, scaling, and materials development; geothermal reservoir and well performance; control systems; reservoir stimulation and extraction technology); direct energy utilization; geothermal data and theory (properties of aqueous solutions, minerals and rocks; rock-water-gas interactions; isotope and trace element studies); waste management; environmental aspects; health and safety; legislation and regulations; economic, industrial, and business aspects.

S16 Tidal and wave power

Includes all aspects of tidal and wave power, such as resources and availability (site characteristics); tidal power plants and power conversion systems; wave energy converters; environmental aspects; health and safety; legislation and regulations; economic, industrial, and business aspects.

For:
- energy derived from undammed, free-flowing streams or ocean currents use S13
- energy derived from the salinity gradient in the oceans use S14
- energy derived from the temperature difference between deep and surface water use S14
S17 Wind energy

Includes all aspects of wind energy, such as resources and availability (climatology and site characteristics); wind energy engineering including applications, turbine design, transport, construction, operation and maintenance, power-conversion systems, grid integration; environmental aspects; health and safety; legislation and regulations; economic, industrial, and business aspects.

S20 Fossil-fueled power plants

Routine aspects of power plant hardware use are not included, but new designs, developments, and technologies are appropriate. Includes design, operation and performance of fossil-fueled power plants and power generation (e.g. cooling and heat transfer equipment; power cycles; waste-fueled systems; components, heat utilization such as combined heat and power plants (cogeneration), off-peak energy storage); waste management (on-site equipment and processes for the control of emissions and effluents; processing, disposal and management of waste fuel products such as fly ash; environmental protection measures); environmental aspects; health and safety; legislation and regulations; economic, industrial, and business aspects.

S21 Specific nuclear reactors and associated plants

Note: This category must be assigned to the relevant literature if the reactor type is specified.

Includes the design, construction, performance, operation, accidents, decommissioning and dismantling of specific reactors (e.g. BWR-, PWR-, PHWR-, WWER-, GCR-, AGR-, HTGR-, LMFBR-types) and reactor plants as energy sources for electricity and heat generation; research reactors (including experimental reactors, zero-power reactors, and subcritical assemblies), test, training, production (of fissionable materials, tritium, other isotopes), irradiation (such as chemonuclear reactors), materials testing, and materials processing reactors; and other applications (includes mobile, propulsion, package, and transportable reactors)....

Environmental aspects (selection criteria, environmental impact studies, environmental implications of generation and release of radioactive and non-radioactive substances, environmental consequences predicted from accident analysis), economic aspects (materials and labor costs, prices, financing, taxes and tax credits, comparative analysis of fission nuclear energy with other energy sources), legal aspects (licensing and inspection of all aspects of reactor siting, operation, and decommissioning as well as accidents of nuclear-powered ships), and reactor safety aspects are included.

(In the case of reactor accidents, please see Appendix 2 for the International Nuclear Event Scale).

S22 General studies of nuclear reactors

Note: This category must be assigned to the relevant literature if no reactor type is specified.

General studies of nuclear reactors, such as reactor theory and reactor physics calculations (including experiments to verify the accuracy of these), reactor components and accessories (design, construction, fabrication, characteristics, performance, and safety aspects of pressure vessels, shielding, cooling systems, coolants, loading machines, etc.; methods and equipment for in-service inspection), reactor fuels (design, fabrication, performance, and safety-related aspects of fuel pellets, fuel elements, and fuel assemblies, fuel-loading procedures, fuel fabrication plants), and reactor control systems (control rods, control rod drives, alarms, and systems for automatic shutdown and initiation of protective actions, including on-line control and man-machine communication problems in reactor control).
Legal aspects of nuclear damage and risk, including operator liability, state responsibility, financial security, insurance for third-party liability or for damage to a nuclear installation, etc.

S24 Power transmission and distribution

Includes the planning, design, development, construction, maintenance, operation and new technologies of power systems and power transmission from any source. Hardware includes transformers, switchgear, converters, and cables. Aspects include power systems; power systems networks, transmission, and distribution; power transmission lines and cables (overhead and underground, including cryogenic and superconducting cables); environmental aspects; health and safety; legislation and regulations; economic, industrial, and business aspects.

S25 Energy storage

Covers methods for storing energy in a readily recoverable form for later use. Such methods may be mechanical (potential or kinetic energy), chemical, electromagnetic, or thermal. Aspects include energy storage by compressed and liquefied gas; capacitor banks; flywheels or magnetic, thermal and chemical storage or batteries (design, development, materials, components and auxiliaries). Includes all environmental aspects; health and safety; legislation and regulations; economic, industrial, and business aspects.

Note: For storage of solar energy, category S14 should be assigned (as primary) in addition to this category.

For:
- solar energy storage use **S14**

S29 Energy planning, policy and economy

Contains general aspects of energy planning, policy, and policy analysis (only non-technical documents). Includes planning and policy aspects of electric power and its generation; of energy storage and transport (e.g. by pipelines); of energy consumption, utilization, and conservation; of district heating and cooling; and of specific energy sources such as fossil fuels, synthetic fuels, nuclear energy, and renewable energy sources (wind, tides, geothermal energy, etc.). Also includes sociology and economics of energy production and use, such as supply and demand, cost comparisons, and environmental, health, and safety aspects. Also includes broad, generally applicable articles on total energy systems, energy management, energy analysis and modelling, legislation and regulations, and the research, development, demonstration, and commercialization policies of governments and private institutions.

S30 Direct energy conversion

Includes methods and devices for converting heat or other forms of energy into electrical energy without intermediate conversion into mechanical work. Aspects include MHD generators; EHD generators; thermoelectric generators; thermionic converters; fuel cells; other converters (e.g. piezoelectric, ferroelectric, magnetothermoelectric, photoelectromagnetic or magnetorestrictive conversion)

For:
- direct energy converters used in fusion technology see **S70**.
S32 Energy conservation, consumption, and utilization

Information on equipment and methods to reduce energy consumption, to increase energy efficiency, or to enable the replacement of scarce or inefficient energy sources by sources which are more plentiful or environmentally favorable. This topic area includes energy conservation within buildings (improved insulation; more efficient lighting, heating, and cooling; monitoring and management of energy consumption), in transportation (improved traffic flow, increased vehicle occupancy, reduction in fuel consumption and in the need for travel), in industry and agriculture, and within municipalities and communities (improvements in district heating and cooling systems, street lighting, recreational facilities, power systems, sewer systems, water and natural gas distribution systems). Typical aspects included are the optimization of materials and processes for reducing energy consumption; improvements in the energy efficiency of equipment and devices (e.g., electric motors, electrical and electronic apparatus for offices, households, commercial facilities and industrial plants, etc.); waste heat recovery and utilization; waste management for energy or resource recovery; consumer educational and motivational tools; and the removal of institutional barriers to energy conservation.

Note: Documents discussing improvements in the "hardware" to promote energy conservation and energy efficiency in vehicles such as automobiles, buses, trucks, and trains are categorized to S33, Advanced Propulsion Systems.

S33 Advanced propulsion systems

Design and development of advanced propulsion systems for automobiles, buses, trucks, trains, ships, and aircraft; for example, components and devices which promise better fuel economy, less maintenance, and increased service life; more efficient power cycles; better emission-control devices; feasibility studies on the use of alternative fuels such as hydrogen or alcohol fuels. Internal combustion engines, external combustion engines, electric-powered systems, hybrid systems, and flywheel propulsion are included, along with associated vehicle design factors involving body and chassis, engine-transmission matching, weight reduction, etc.)

S36 Materials science

This category includes materials science aspects of the metals, alloys, intermetallic compounds, refractories, ceramics, and cermets (borides, carbides, hydrides, nitrides, oxides, and silicides) of metals of interest in energy and nuclear science and technology (see Appendix 1), as well as composite materials, polymers and plastics, boron, carbon, graphite, concrete, glass, semiconductor materials, soil, rock, cloth, and textiles of similar identified energy-related interest.

The specific aspects of interest include the following:

Preparation and fabrication (bonding, brazing, casting, cold working, drawing, extrusion, fastening, forging, forming, hot working, molding, pressing, rolling, sintering, soldering, swaging, welding, etc.)

Structure and phase studies (allotropy, crystal-phase transformations, melting points, microstructure, phase diagrams, solidification)

Mechanical properties (brittleness, buckling, cracking, creep, deformation, ductility, elasticity, embrittlement, fatigue, fracture properties, friction, hardness, plasticity, Poisson's ratio, rupture, shear properties, strain, strength, stress, tensile properties, toughness, wear, Young's modulus, etc.)

Physical properties (damping, density, electrical properties, internal friction, magnetic properties, optical properties, specific heat, superconducting properties (such as critical current, critical fields, Meissner effect, transition temperature), thermal conductivity, thermal diffusivity, thermal expansion, thermodynamic properties, transformation temperature, vapor pressure, etc.)
Corrosion and erosion (including oxidation, hydridation, and sulfidation)

In addition, this category includes all radiation effects on the mechanical integrity or physical properties of ALL materials.

S37 Inorganic, organic, physical and analytical chemistry

Includes **analytical and separation chemistry** (acitivation, nuclear reaction, radiometric, and radiochemical procedures; inorganic, organic, and physical chemistry; electrochemistry; photochemistry; combustion, pyrolysis and high-temperature chemistry....

Isotope effects on nonnuclear chemical and physical properties of elements and compounds. (isotope effects are not included when used only as a tool in the analysis of reaction mechanisms or in chemical structure studies)....

Isotope exchange if the exchange is of primary concern or the exchange mechanism is used in isotope separation. Chemical and physicochemical methods of **isotope separation** are included. (For industrial methods of isotope separation see S07).

S38 Radiation chemistry, radiochemistry and nuclear chemistry

Hot-atom chemistry. Chemical reactions of atoms or ions of high kinetic energy (more than 1 eV) resulting from nuclear transformations, including recoil production).

Properties of radioactive materials. Chemical and physico-chemical properties of radioactive elements, compounds or materials....

Preparation of radioactively-labeled compounds. Chemical separation and preparation of radioisotopes (other than analytical applications and industrial methods of production, separation and enrichment), preparation of radioactively labeled compounds and studies of their stability.

Radiation Chemistry. Radiation-induced chemical reactions, including formation of free radicals and G value determination, analysis of radiolytical products; chemical radiation effects on gases, liquids, and solids (excluding industrial applications); post-factum detection of food irradiation (nuclear radiation only, e.g., beta, gamma radiation). Note: effects of ultraviolet, visible and infrared radiation as well as laser beams are excluded.

S42 Engineering

Encompasses general engineering information directly related to energy, including facilities, equipment and techniques. Includes **protective structures and equipment**, such as blast and fallout shelters, air-filtration systems, fire protection systems, special clothing. **Handling equipment and procedures**, e.g. for handling of radioactive materials not necessarily related to nuclear fuel cycle (see S11), handling equipment, such as remote-handling equipment, glove boxes, hot cells. **Shipping containers** for radioactive materials. **Transport and storage facilities**, such as tanks, pipelines, tanker vessels. **Heat transfer and fluid flow** studies (nucleate boiling, boiling burnout, critical heat flux, two-phase flow). **Materials testing. Combustion systems** (e.g. boilers, furnaces). **Mining and underground engineering. Marine engineering** (equipment for offshore operations). **Power cycles** (Brayton, Rankine, Stirling and others). **Components, electron devices and circuits** (including lasers and masers). Peaceful uses of **Nuclear explosions** for e.g. civil engineering purposes.

S43 Particle accelerators
Design, development, operation, decommissioning, dismantling of particle accelerators and storage rings used in energy research. Topics include beam dynamics, field calculations, and ion optics; auxiliaries and components (e.g. ion and electron sources; injection and extraction systems), experimental facilities and equipment

S46 Instrumentation related to nuclear science and technology

Includes radiation detectors or monitors, radiometric instruments, radiation doseometers, nuclear spectroscopic instrumentation, high-energy physics instrumentation, particle detectors, and other nuclear-related instrumentation such as flowmeters, pressure gages and heat sensors....

Radiation effects on instruments or electronic systems

S47 Other instrumentation

Includes well logging, thermal, optical, geophysical, meteorological and other instrumentation associated with energy research.

S54 Environmental sciences

This category is used for pollutants/contaminants in the environment that cannot be directly connected with a particular energy source. If the source is clear, the subject category for the energy source is used.

Includes information on the effects of any energy-related activity on the environment (land, water or atmosphere), on methods for mitigating or eliminating adverse effects (e.g. carbon capture and sequestration), and on technical aspects (e.g. radiometric methods using radioisotopes or ionizing radiations) of ensuring that energy-related activities are environmentally safe and socially acceptable. Includes site resource and use studies, such as seismological, geological, soil, hydrological, meteorological, climatic and atmospheric studies of existing or potential sites for any phase of energy development and use. This area covers all aspects of global climate change. Covers monitoring and transport of chemicals, radioactive materials and thermal effluents within the atmospheric, terrestrial and aquatic environment.

S58 Geosciences

This area is limited to providing information to support research in geosciences where the context of the work is energy technology. Aspects of geology, geography, seismology and geochemistry are covered when energy-related. This category should be used if an item cannot categorized elsewhere.

S60 Applied life sciences

Comprehensive coverage is not obligatory for ETDE

Plant cultivation and breeding (crop and plant improvement by development of radiation-induced mutants, including use of radiomimetic substances in comparative studies, nuclear techniques (tracers only if the application is new) in plant growth and cultivation, including plant nutrition, metabolism, fertilizer utilization, and irrigation studies, assessment of seed quality by nuclear or radiographic techniques, low-dose stimulation of plant growth)
Pest and disease control (nuclear techniques (tracers only if the application is new) relating to specific human, animal and plant parasitic diseases, to pathogens, including viruses, and to disease transmission, radiation procedures in vaccine production and animal reactions to irradiated pathogens, new applications of tracers in pest ecology, including host-parasite relationships, and in studying pesticides (including weed control) and insect pathogens, radiation sterilization for control of insects and other arthropods of agricultural significance (e.g. sterile insect release)

Food protection, preservation and human nutrition evaluation (irradiation procedures for, and radiation effects on, agricultural food products, fish and fish products, processed foods and food ingredients, processed animal feed, extension of storage life and sprout inhibition, radiation disinfestation of stored and packaged food products and chemical changes resulting from irradiation, radiation processing of food on an industrial scale, evaluation of wholesomeness and quality of irradiated food, contamination and monitoring of, and decontamination procedures for food, new applications of isotopic techniques in human nutrition evaluation)

Animal husbandry (new applications of tracers in nutrition, metabolism and breeding of domestic animals, nuclear techniques in veterinary science)

Other applications of radiations and radioisotopes in life sciences (irradiation sterilization in medicine, nuclear techniques and applications of radiation and stable or radioactive isotopes (tracers only if the tracer or application is new) in the life sciences)

S61 Radiation protection and dosimetry

Radiation Protection Standards. Technical standards, including definitions and units, dealing with the presence of radioactive materials, natural or artificial (e.g. radon in houses or mines), or with the operation of reactors or other nuclear equipment or facility when such standards are set to provide radiation protection for man; documents about such standards....

Radiation Protection Procedures. Procedures designed wholly or primarily to provide radiation protection for man (except for shielding of reactors and accelerators); prevention of contamination or procedures for decontamination, including chemical decontamination of materials, structures and equipment.

Dosimetry and Monitoring. Personnel dosimetry and radiation monitoring (e.g., in nuclear facilities, industry, radiotherapy, X-ray diagnostics, nuclear medicine) for both patients and medical personnel; medical surveillance of personnel exposed to ionizing radiations in conformance with national or international radiation protection regulations or recommendations; population dose estimates, collective dose and dose commitment from natural background radiation (e.g. radon in houses or mines), or as a result of nuclear accidents, from medical or industrial use of radioisotopes and ionizing radiations or from contaminated food; calculation and measurement of absorbed doses in man, animals, plants and other biological systems at all levels, as well as in tissue-equivalent materials and phantoms)....

Legal aspects. Legal aspects of protecting personnel and members of the public; legal aspects of protecting the environment against contamination from the operation of nuclear facilities; legal aspects of direct or indirect applications of radioisotopes and radiation to man (e.g., medical and industrial applications, food irradiation, radiation from consumer products).

S62 Radiology and nuclear medicine

Comprehensive coverage is not obligatory for ETDE

External radiation in diagnosis (advances in the use of ionizing radiations (e.g., X-rays, bremsstrahlung, gamma radiation, neutrons, charged particles) for diagnostic purposes, advances in imaging procedures, including NMR
Note: sonography and routine X-ray diagnostics are excluded

Radioisotopes in diagnosis (advances in the use of radioisotopes and stable isotopes for diagnostic purposes, imaging and non-imaging procedures, radioassay, including radioimmunoassay, incorporation and elimination of radioisotopes and labelled compounds, advances in Single Photon ECT, Positron Computed Tomography)

External radiation in therapy (advances in the use of ionizing radiations for therapeutic purposes (implants are included), surface and depth dose distributions, afterloading, irradiation and dose planning, use of response modifying factors in radiation therapy)

Radioisotopes in therapy (advances in the use of radioisotopes for therapeutic purposes, internal dose distributions, response modifying factors, radioactivation (e.g. neutron capture therapy), incorporation and elimination of radioisotopes and labelled compounds)

S63 Radiation, thermal, and other environmental pollutant effects on living organisms and biological materials

Effects of External Irradiation on Biochemicals, on Cell and Tissue Cultures, and on Microorganisms. Effects of radiations, including ultraviolet radiation and laser radiation, on living systems at the biochemical, cellular and tissue culture level, on isolated cell constituents, and on microorganisms, both animals and plants (e.g., bacteria, bacteriophages, rickettsiae, yeasts, viruses); includes the relative effects of irradiation procedures, doses, dose rates, Relative Biological Effectiveness (RBE), Linear Energy Transfer (LET) and various response modifying factors.

Effects of External Irradiation on Plants. Effects of ionizing radiations on plants or parts of plants (seeds, roots, leaves, etc.), plant growth, physiology and metabolism; includes the relative effects of irradiation procedures, doses, dose rates, Relative Biological Effectiveness (RBE) and Linear Energy Transfer (LET); modification of effects of such radiation due to various response modifying factors, such as radioprotective and effect-enhancing substances or irradiation conditions....

Effects of External Irradiation on Animals. Effects of ionizing radiations, including immunological consequences, on any animal; includes the relative effects of irradiation procedures, doses, dose rates, Relative Biological Effectiveness (RBE) and Linear Energy Transfer (LET); modification of effects of such radiations due to various response modifying factors, such as radioprotective or effect-enhancing substances or irradiation conditions; side effects (e.g. toxicity) of such substances; effects of radiomimetic substances and radiation in comparative studies....

Effects of External Irradiation on Man. Effects of ionizing radiations (including immunological consequences, acute and late effects) on man; includes the relative effects of irradiation procedures, doses, dose rates, Relative Biological Effectiveness (RBE), Linear Energy Transfer (LET) and quality factors; modification of effects of such radiations due to various response modifying factors, such as radioprotective or effect-enhancing substances or irradiation conditions; side effects (e.g. toxicity) of such substances; side and late effects of such radiations in medical diagnosis and therapy; epidemiological studies of possible radiation-caused illness....

Effects of Internal Irradiation and Various Aspects of Radioisotope Kinetics and Toxicity in Man, Animals, Plants and Microorganisms. Acute and late effects of absorbed or incorporated radioactive materials (not implanted sources or afterloading); internal source evaluation; side and late effects, including toxicity, of the use of radioisotopes in bound or unbound form in diagnosis and therapy; radioisotope kinetics, localization, uptake and elimination of radioisotopes at all levels (subcellular, cellular, tissue, organ and whole organism); also includes contamination and decontamination (both internal and external), use of chelating agents or complex forming agents, modifying factors and radioprotective substances, e.g., EDTA (ethylene-diaminetetraacetic acid), DTPA (diethylenetriaminepentaacetic acid), stable iodine; epidemiological studies of possible radioisotope-caused illness].

https://nkp.iaea.org/INISSubjectCate...
Effects of thermal effluents on living organisms from energy production, utilization or conservation activities.

Includes effects of temperature change resulting from the energy cycle, such as decreased temperature effects from hydroelectric dams or increased temperature effects from fossil fuel burning.

Chemicals Metabolism and Toxicology. Includes effects of any element or compound (e.g. PCBs, freons) associated with an energy cycle, including resource extraction, conversion utilization, and waste processing and disposal.

Effects of other environmental pollutants, such as noise produced in energy production, conversion, or utilization; hazards from power transmission lines, Laser and microwave hazard, effects from global climate changes, and any other health hazards from energy related activities that are not covered in other categories.

S70 Plasma physics and fusion technology

Plasma Physics (Note: includes only plasmas related to nuclear fusion). Plasma confinement, including both magnetic and inertial confinement (studies on plasma lifetime, particle and heat loss, energy balance in plasma and fusion devices, enhanced confinement concepts, alpha particle confinement, disruptions), plasma production, heating, and interactions (includes ohmic, radiofrequency, microwave, ICR, ECR and lower hybrid heating, plasma heating by laser or particle beams, shock waves, compression, plasma production by guns or other means, electromagnetic wave propagation and absorption, interactions with antennas, walls, probes and sheaths, current drive), plasma kinetic equations, thermodynamic properties, neoclassical theory, plasma transport, plasma impurities, plasma simulation, plasma waves (electrostatic, electrodynamic, MHD, sound, drift or other waves, linear or nonlinear), plasma oscillations, plasma instabilities (macro- and micro-instabilities), turbulence, solitons, BGK modes, shock waves, plasma fluid and MHD properties (includes MHD equilibria and resistive MHD effects), nuclear fusion reactions (exoenergetic fusion reactions between nuclei of light elements in plasma, beam-induced fusion, cold fusion, muon-catalyzed fusion, etc.), elementary and classical processes in plasmas (particle orbits, electron, atom, ion, molecule and heavy-particle collisions in plasmas), plasma diagnostic techniques and instrumentation (diagnostic techniques and instrumentation for rf, optical, X-ray, gamma-ray and particle measurements), other physics studies of fusion plasmas....

Fusion Technology (Note: includes hybrid reactors). Fusion devices and experiments (design and specifications of magnetic or inertial confinement devices, implosion physics, studies related to laser fusion, electron beam fusion and ion beam fusion, safety analyses of fusion devices), plasma-facing components (physics and engineering related to first wall, liners, limiters, divertors, impurity control, etc.), magnet coils and fields (experiments, design analyses and design codes related to magnets and magnetic field configurations), power supplies and energy storage (design and performance analyses for any power supply or energy storage system associated with a fusion device), blankets and cooling systems (physics and engineering studies of blankets, and studies of heat transfer or system components), other components of fusion devices (such as vacuum and exhaust systems, control systems, shielding), materials studies related to fusion research, heating and fueling systems (studies on any plasma gun, neutral beam source to be used for beam injection, or microwave or laser radiation source used for plasma heating), fusion fuels (studies on deuterium, tritium, boron -11, etc., for use as fuel, including processing, inventories and availability), power conversion systems (studies on MHD topping cycles, direct energy converters, gas turbines, etc.).

Economics of Fusion Nuclear Power and Fusion Fuel Cycle (Note: includes economic aspects of hybrid reactors). Economic aspects of fusion nuclear energy; forecasts, R & D expenditures; economic comparison of fusion reactors with alternative power sources or of different reactor types; financing of fusion nuclear power; methodology of comparative analysis of fusion nuclear energy and other energy costs; economic aspects of fusion fuel production or recovery; forecasts of fusion fuel requirements, R & D expenditures; economic aspects of waste management; economic aspects of nuclear accidents.
Aspects of classical mechanics of interest for nuclear science and technology, general aspects of quantum mechanics (formalism, theory of measurement, mathematical models, non-relativistic scattering theory, semiclassical theories) not applied to a specific field, general theory of scattering;

Cryogenics (methods and equipment for low temperature application in systems of interest for nuclear science for which no more appropriate category is identifiable, basic cryogenic studies relevant to nuclear technology or in which nuclear phenomena are involved (e.g. nuclear alignment at low temperature), vacuum production and techniques at cryogenic temperatures and of interest for nuclear science and technology);

Particle beam production and handling, targets (beam production and transport of electron, neutron, ion, atomic and molecular beams (not for specific applications), nonisotopic electron, neutron and ion sources not developed for specific applications), nuclear target preparation using ion, atomic or molecular beams);

Other aspects of physical science of nuclear relevance

Note: restricted to physical processes or studies of systems or materials of stated nuclear relevance

(other physical sciences such as statistical physics, dynamical systems, thermodynamics, electricity and magnetism, electrodynamics, optics, acoustics, continuum mechanics, etc., that have a relevance for nuclear science and technology)

S72 Physics of elementary particles and fields

Comprehensive coverage is not obligatory for ETDE

Theory of fields and strings (axiomatic, Lagrangian and Hamiltonian approaches, renormalization, field theories in higher dimensions, such as Kaluza-Klein theories, Schwinger source theory, Bethe-Salpeter equations, relativistic wave equations, lattice gauge theory, techniques employed in field theory studies, such as strong-coupling expansions, theories of strings and other extended objects in the context of elementary particles, superstring theory, theory of quantized fields, etc.), symmetry, conservation laws, currents and their properties (Lorentz and Poincare invariance, C, P, T and other discrete symmetries, flavor symmetries, internal symmetries, supersymmetry, spontaneous symmetry breaking, chiral symmetries, current algebras, studies concerning scalar, pseudoscalar, vector, axial vector and tensor currents, etc.), S-matrix theory (scattering matrices, dispersion relations, sum rules, bootstraps, crossing symmetries, Mandelstam representation, Regge formalism, etc.), relativistic scattering theory, unified theories and models (models of electroweak interactions, extensions of gauge or Higgs sector, quark and lepton masses and mixing, applications of electroweak models to specific processes, neutral currents in electroweak interactions, unified theories and models of strong and electroweak interactions, including those that involve gravitation, etc.), Quantum Electrodynamics (QED) (specific calculations and limits of QED, experimental tests of QED), Quantum Chromodynamics (QCD) (general properties, lattice QCD calculations, quark-gluon plasma, experimental tests), models for strong interactions (bag models, statistical models, Regge poles and cuts, peripheral, multi-peripheral and multi-Regge models, duality and dual models, bootstrap model, absorptive, optical and eikonal models, potential models, vector-meson dominance, other composite models of quarks, leptons, gauge bosons, symmetry breaking, hadron mass formulas, etc.), interactions, decays and processes (interactions of leptons, i.e. neutrinos, electrons, muons, tauons, and their corresponding antiparticles, among one another and with non-leptons, interactions of photons, interactions of hadrons with other hadrons (e.g., nucleon-nucleon, hyperon-nucleon, pion-baryon, kaon-baryon, meson-meson interactions), decays of mesons, baryons, leptons, intermediate bosons (W+, W-, Z), electromagnetic processes and properties (electromagnetic mass differences, form factors and decays, electromagnetic moments, electromagnetic corrections to strong- and weak- interaction processes, etc.), properties of particles and resonances (properties of baryons and baryon resonances, meson and meson resonances, leptons, other particles, e.g., photons, quarks, intermediate bosons, including hypothetical particles, such as gluons, Higgs bosons, magnetic monopoles, supersymmetric particles, tachyons, etc.)
S73 Nuclear physics and radiation physics

Comprehensive coverage is not obligatory for ETDE

Nuclear Structure

General and average properties of nuclei and nuclear energy levels (masses, binding energies, mass and charge distributions, spin, parity, isospin, spectroscopic factors, static electromagnetic moments, level densities, strength functions, collective levels and giant resonances, Coulomb energies, nuclear forces, few-nucleon systems, nuclear matter, hypernuclei, etc.), nuclear structure models and methods (shell models, collective models, models based on group theory, cluster models, Hartree-Fock and random-phase approximations, etc.)

Radioactivity and electromagnetic transitions (alpha decay, proton-emission decay, decay by emission of heavier composite particles, beta decay, electron and muon capture, including weak-interaction and lepton aspects of beta decay and electron and muon capture by nuclei, and the relation with nuclear matrix elements and nuclear structure), transition probabilities and lifetimes, multipole matrix elements, multipole mixing ratios, internal conversion and extranuclear effects, nuclear resonance fluorescence, angular distribution and correlation measurements of electromagnetic transitions, gamma transitions and level energies, Moessbauer effect, etc.)

Nuclear reactions and scattering (nuclear reactions and scattering models and methods, resonance reactions and scattering, direct reactions, statistical reactions and fluctuations, polarization in reactions and scattering, specific nuclear reactions and scattering (photonuclear reactions and photon scattering, lepton-, nucleon-, deuteron-, triton-, helion-,... and alpha particle-induced reactions and scattering, heavy-ion-induced reactions and scattering, meson and hyperon-induced reactions and scattering, fission, both spontaneous and induced)

Radiation Physics

Note: X radiation, gamma radiation, bremsstrahlung, neutrons, electrons, protons, deuterons, alpha particles, heavy ions, other particles

(interactions of radiations with bulk matter and radiation transport: scattering, absorption, diffusion of radiations as they pass through macroscopic systems, including thermalization, multiplication, and moderation of neutrons, solution of the neutron transport equation and theoretical neutron transport in matter in general geometric configurations such as spheres, cylinders, plates, etc., range-energy relations, energy loss mechanisms and absorption mechanisms, shielding calculations and experiments for which no more appropriate category is identifiable)

S74 Atomic and molecular physics

Comprehensive coverage is not obligatory for ETDE

Theory of electronic structure of atoms and molecules (general theory of electronic structure and transitions, specific calculations and results for atoms relevant to nuclear physics or technology, such as hydrogen, deuterium, tritium, helium, fission products, lanthanides, scandium, technetium, yttrium, and elements with Z greater than 83, and for molecules of hydrogen, deuterium, tritium, helium, fission products, and compounds of technetium and elements with Z greater than 83, effects of molecular interactions on electronic structure of the atoms and molecules specified above, corrections to electronic structure, e.g. hyperfine interactions, isotope effects, radiative and relativistic effects, for the atoms specified above, excited states of the atoms and molecules specified above); Atomic and molecular spectra, interactions with photons (Zeeman and Stark effects, electron paramagnetic resonance (EPR) and relaxation, optical activity, dichroism, magneto-optical and electro-optical effects, and photon collisions with atoms of hydrogen, deuterium, tritium, helium, fission products, lanthanides, scandium, technetium, yttrium, and elements with Z greater than 83, molecules of hydrogen,
deuterium, tritium, helium, fission products, compounds of technetium and elements with \(Z \) greater than 83, and elements of interest for thermonuclear fusion, such as lithium, beryllium, boron, carbon, oxygen, neon, magnesium, aluminium, silicon, argon, titanium, vanadium, chromium, iron, nickel, copper, gallium, krypton, niobium, molybdenum, xenon, tantalum and tungsten, fluorescence and phosphorescence of promethium and its compounds and the atoms and molecules specified above, use of nuclear phenomena and techniques in studies of any aspects of atomic and molecular properties and structure, e.g., nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), multiple resonances (DNMR, ENDOR, etc.), Moessbauer effect for the atoms or molecules specified above)

Collision phenomena (general theories and models, experimental and theoretical studies of elastic scattering, excitation, de-excitation, excitation transfer, ionization, dissociation, charge exchange, electron capture, electron loss, electron attachment, or electron detachment in electron-ion, electron-atom, electron-molecule, ion-ion, ion-atom, ion-molecule, atom-atom, and atom-molecule collisions, involving atoms, molecules or ions of nuclear relevance or of interest for thermonuclear fusion)

Experimentally derived information on atomic and molecular properties (masses, abundances, moments, polarizability, fine- and hyperfine-structure constants, ionization potentials, electron affinities, bond strengths, dissociation energies, rotation, vibration and vibration-rotation constants, etc., of atoms of hydrogen, deuterium, tritium, helium, fission products, lanthanides, scandium, technetium, yttrium, and elements with \(Z \) greater than 83, molecules of hydrogen, deuterium, tritium, helium, fission products, compounds of technetium and elements with \(Z \) greater than 83, and for elements of interest for thermonuclear fusion).

S75 Condensed matter physics, superconductivity and superfluidity

Comprehensive coverage is not obligatory for ETDE

Nuclear techniques in condensed matter physics (advances in the use of nuclear techniques or measurement methods in studies of the structure, including electronic structure, of solids and liquids (e.g., neutron diffraction and scattering, spin-polarized electron scattering, synchrotron -source X-ray scattering, nuclear magnetic resonance and relaxation, including ENDOR, DNMR), muon spin rotation and relaxation, Moessbauer effect and other gamma -ray spectroscopy, positron annihilation);

Solid-state plasma, physics of surfaces, interfaces and thin films (studies of solid-state plasma in bulk matter, surfaces, interfaces and thin films, including electron-hole droplets, physics studies of surfaces, interfaces and thin films of indicated interest for nuclear science and technology);

Physics of direct electricity production: basic studies of magnetohydrodynamics (movement of conducting fluids in magnetic or crossed electric and magnetic fields), electrohydrodynamics (movement of nonconducting fluids in electric fields), thermolectric effect, thermionic emission, etc., of relevance to energy/nuclear science and technology; Note: for direct energy conversion devices and equipment use S30

Interactions between beams and condensed matter (effects, including channeling, blocking, ion implantation and generation of crystal defects, from bombardment with laser radiation, X-rays, gamma rays, electrons, positrons, neutrons, ions, atoms, and molecules where the interest is in the effect itself at the microscopic level and not in the material in which it takes place, impact phenomena, Auger emission, secondary emission, sputtering, etc., from the collisions of electrons, ions, atoms and molecules with surfaces);

Quantum physics aspects of condensed matter such as superconductivity (both low-temperature and high-temperature superconductivity) (basic superconductivity studies relevant to nuclear technology, basic theory, review studies, general properties, such as magnetization curves, thermodynamic properties, response to electromagnetic fields, nuclear magnetic resonance, flux pinning, critical currents), superconducting devices (application of superconductivity in magnets or other devices of use in nuclear science, including devices using superconductors or superconducting junctions as components; routine applications are excluded), superfluidity (phenomenology, hydrodynamics, transport processes, models, etc., of
superfluid helium-4 (He II), superfluid helium-3 and He II-He-3 mixtures), other quantum aspects of condensed matter (e.g. studies of phenomena relying on quantum statistics, electron-phonon coupling, spin-lattice relaxation, energy bands)

For:
MHD, EHD and thermoelectric generators, thermionic converters use S30

S77 Nanoscience and nanotechnology

All aspects of nanoscience and nanotechnology, which encompasses both the control of matter and the fabrication of devices with critical dimensions in the nanometer size range. Theoretical and experimental studies as well as applications are included.

All applications of radiation in nanoscience and nanotechnology

Nanostructure chemistry and nanomaterials: nanoscale chemical structures; nanocomposites; quantum dots, quantum wells, quantum wires, nanotubes, nanorods, 2D-graphite layers, fullerens, nanocrystals; sol-gels, quasi crystals; nanoengineered membranes; crystal growth methods like molecular beam epitaxy (MBE), chemical beam epitaxy (CBE), metal-organic chemical vapor deposition (MOCVD), etc., as applied in nanotechnology; properties of nanomaterials and effects of radiation on nanomaterial properties

Nanodevices and nanoelectronics: nanocomputing devices; nanotransistors; nanoelectromechanical systems (NEMS); molecular electronics; nanoscale magnets, etc.

Nanomedicine and nanotechnology: biomolecular and biomimetic devices; biosensors; molecular motors; bimolecular fabrics; engineered enzymes and proteins; drug discovery and drug delivery systems, etc.

Nanoprocesses: "bottom up" processes like self assembly, directed assembly, self organization; "top down" processes like electron beam nanolithography, ion beam nanolithography, X-ray nanolithography, laser nanomachining; nuclear track membranes; ion etching; nanomechanics; molecular simulation; scanning probe writing and fabrication, etc.

Nanometrology: electron beam techniques (transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), etc.); scanning probe techniques (scanning probe microscopy (SPM), scanning tunneling microscopy (STM), atomic force microscopy (AFM), etc.); optical techniques (near-field scanning optical microscopy, tip-enhanced Raman microscopy, optical tweezers, etc.)

Note: Only if it is of relevance for energy technology or if it is associated with an actual or simulated energy-related application

For:
fabrication and properties of, and radiation effects on, materials on the macroscopic scale use S36
chemistry of substances on the macroscopic scale use S37
quantum information, entanglement and teleportation use S71

S79 Astrophysics, cosmology and astronomy

Application of physical theories and methods to study solar, stellar and galactic origin, structures and evolution, stellar objects and galaxies; and related problems in cosmology

Note: Only if it is of nuclear interest or if it is associated with cosmic radiation, nuclear and high-energy physics.
Fundamental Aspects of Astronomy and Astrophysics: X-ray astronomy, gamma-ray astronomy, infrared astronomy, ultraviolet astronomy, and radio and radar astronomy; Astrophysical processes (in sun, stars, interstellar space etc.): elementary particle, nuclear, atomic and molecular processes and data, spectra and spectral parameters

Solar System: Formation and evolution of the solar and planetary systems; structure and spectra of the Sun, sunspots and solar prominences, radio bursts, etc.; radio emissions from planets, natural radioactivity and age determination of extraterrestrial materials, and radiation belts of planets

N.B. Celestial mechanics and routine astronomical observations, e.g. sky surveys, are excluded.

Stellar systems, galactic and extragalactic objects and systems, Universe: Formation, composition, structure and evolution of stars, stellar systems, star clusters, neutron stars, black holes and galaxies; radio and x-ray sources, quasars, radio galaxies, supernova remnants etc.

Interplanetary/interstellar space: Characteristics of the interstellar medium: magnetic fields, gravitational fields; identification of molecular species in space; dark matter (stellar, interstellar, galactic and cosmological); gravitational collapse; dark energy

Space plasma phenomena: Solar wind plasma, sources of solar wind, stellar wind, galactic wind, plasmasphere, plasma temperature and density, particle acceleration, plasma waves, plasma and MHD instabilities, dusty plasma, plasma interaction with particles and fields, radiation processes

Cosmic radiation: composition, energy spectra, interactions, extensive air showers, cosmic rays propagation and detection, solar radiation, stellar radiation (x-rays, gamma-rays, neutrinos, muons, pions and other elementary particles), induced radioactivity of extraterrestrial material, e.g. meteorites and lunar material.

Cosmology: Origin, formation and evolution of the universe; relict radiation; particle and field theory models for early universe (including cosmic pancakes, cosmic strings, inflationary universe etc.); observational cosmology (Hubble constant, distance scale etc); quantum cosmology; gravitational waves, tests of general relativity.

Methods, equipment and instrumentation: Radio telescopes, X- and gamma-ray telescopes and instrumentation, space-borne and space research instruments, apparatus and components; gravitational wave detectors; spectroscopy; artificial earth satellites and spacecraft; measuring methods in astrophysics.

For:
- plasma physics and fusion technology use S70
- nuclear reactions mechanism use S73
- elementary particle processes use S72
- molecular processes and interactions use S74
- radiation detectors and instrumentation not specifically for astrophysical application use S46
- geophysical studies, instrumentation and techniques use S58
- Earth magnetosphere (ionosphere, plasmasphere) use S58

S96 Knowledge management and preservation

Knowledge Management (to be of use in all sectors of nuclear or energy science and technology) including policies and strategies for energy knowledge management and knowledge preservation programs; methods and tools that have been used to implement knowledge management and preservation programs; terminology, concepts, and techniques associated with knowledge management.
Human resources planning and knowledge transfer, practical examples of knowledge management applications within nuclear or energy science and technology, energy education and training, partnerships and networking to support energy knowledge management and education and training.

Documentation, data and literature handling: descriptions and evaluations of systems, both manual and computer-based, for collecting, analyzing, evaluating and publishing data, literature and bibliographic information relating to nuclear or energy science and its applications; data libraries, standardization of terminology.

For:
- electronic and other instrumentation for data acquisition use S46

S97 Mathematical methods and computing

Mathematical methods and models, simulations and computer codes, programming, computer architecture, supercomputers and supercomputing for applications in nuclear or energy science and technology.

For:
- Methods and models appropriate to specific subjects see appropriate categories
- For example for:
 - Particle models use S72
 - Crystal models use S36 or S75
- For:
 - electronic and other instrumentation for data acquisition use S46

S98 Nuclear disarmament, safeguards and physical protection

Legal aspects of nuclear disarmament: non-proliferation of nuclear weapons and nuclear-weapon-free zones, including the monitoring of nuclear materials derived from arms reduction and conversion; comprehensive nuclear weapons test ban; national arms control policy and aspects of treaty compliance and verification; legal aspects of physical protection; legal aspects of peaceful nuclear explosions, peaceful uses of sea-bed and space; legal aspects of nuclear weapons tests.

Safeguards (those measures designed to guard against the diversion of material, such as source and special nuclear material, from uses permitted by law or treaty, and to give timely indication of possible diversion or credible assurance that no diversion has occurred). All technical, non-technical and legal aspects of nuclear safeguards. These aspects include research, development and implementation of systems, techniques, instrumentation and inspection procedures to detect diversion of nuclear material or materials of special interest, such as heavy water from peaceful nuclear activities, and monitoring of nuclear materials derived from arms reduction and conversion; development of nuclear materials accounting systems covering the physical security of materials in transit, in use or in storage; and administrative, political, economic, organizational and other aspects of the development and application of safeguards, including implementation of safeguards to the verification arrangements for regional nuclear-weapon-free-zones and the monitoring of nuclear materials derived from arms reduction and conversion.

S99 General and miscellaneous

This category is intended for research interests of organizations in disciplines for which no specific category has been defined, such as general law. This category encompasses documents dealing with organizations, administration, financing, general descriptions of institutions and programs, directories, reference books, lists of publications, historical,
philosophical and educational aspects.

Note: This category should be used if an item cannot be categorized elsewhere.

Appendix 1. Guide for elements of nuclear interest

This list is provided as a guide to the principal elements of nuclear interest. In addition to the elements mentioned explicitly it also includes **all fission products**. Literature on elements not listed should only be included if positively identified as of nuclear interest. Even for the elements listed, judgment must be used. The study of a large molecule which incidentally includes an element of interest as a minor constituent seldom contributes to the knowledge of the properties of that element, and thus would be outside the scope of INIS.

<table>
<thead>
<tr>
<th>ACTINIUM</th>
<th>(Ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMERICIUM</td>
<td>(Am)</td>
</tr>
<tr>
<td>ASTATINE</td>
<td>(At)</td>
</tr>
<tr>
<td>BERKELIUM</td>
<td>(Bk)</td>
</tr>
<tr>
<td>BERYLLIUM</td>
<td>(Be)</td>
</tr>
<tr>
<td>BORON</td>
<td>(B)</td>
</tr>
<tr>
<td>CADMIUM</td>
<td>(Cd)</td>
</tr>
<tr>
<td>CALIFORNIIUM</td>
<td>(Cf)</td>
</tr>
<tr>
<td>CERIUM</td>
<td>(Ce)</td>
</tr>
<tr>
<td>CESIUM</td>
<td>(Cs)</td>
</tr>
<tr>
<td>CURIUM</td>
<td>(Cm)</td>
</tr>
<tr>
<td>DYSPROSIUM</td>
<td>(Dy)</td>
</tr>
<tr>
<td>EINSTEINIUM</td>
<td>(Es)</td>
</tr>
<tr>
<td>ERBIUM</td>
<td>(Er)</td>
</tr>
<tr>
<td>EUROPIUM</td>
<td>(Eu)</td>
</tr>
<tr>
<td>FERMIUM</td>
<td>(Fm)</td>
</tr>
<tr>
<td>FRANCIIUM</td>
<td>(Fr)</td>
</tr>
<tr>
<td>GADOLINIUM</td>
<td>(Gd)</td>
</tr>
<tr>
<td>HAFNIUM</td>
<td>(Hf)</td>
</tr>
<tr>
<td>HOLMIUM</td>
<td>(Ho)</td>
</tr>
<tr>
<td>INDIUM</td>
<td>(In)</td>
</tr>
<tr>
<td>IODINE</td>
<td>(I)</td>
</tr>
<tr>
<td>LANTHANUM</td>
<td>(La)</td>
</tr>
<tr>
<td>LAWRENCIUM</td>
<td>(Lr)</td>
</tr>
<tr>
<td>LITHIUM</td>
<td>(Li)</td>
</tr>
<tr>
<td>NEPTUNIUM</td>
<td>(Np)</td>
</tr>
<tr>
<td>NIOBIUM</td>
<td>(Nb)</td>
</tr>
<tr>
<td>NOBELIUM</td>
<td>(No)</td>
</tr>
<tr>
<td>PLUTONIUM</td>
<td>(Pu)</td>
</tr>
<tr>
<td>POLONIUM</td>
<td>(Po)</td>
</tr>
<tr>
<td>PRASEODYMIUM</td>
<td>(Pr)</td>
</tr>
<tr>
<td>PROMETHIUM</td>
<td>(Pm)</td>
</tr>
<tr>
<td>PROTACTINIUM</td>
<td>(Pa)</td>
</tr>
<tr>
<td>RADIUM</td>
<td>(Ra)</td>
</tr>
<tr>
<td>RADON</td>
<td>(Rn)</td>
</tr>
<tr>
<td>RHENIUM</td>
<td>(Re)</td>
</tr>
<tr>
<td>RUTHENIUM</td>
<td>(Ru)</td>
</tr>
<tr>
<td>SAMARIUM</td>
<td>(Sm)</td>
</tr>
<tr>
<td>SCANDIUM</td>
<td>(Sc)</td>
</tr>
<tr>
<td>STRONTIUM</td>
<td>(Sr)</td>
</tr>
<tr>
<td>TANTALUM</td>
<td>(Ta)</td>
</tr>
<tr>
<td>TECHNETIUM</td>
<td>(Tc)</td>
</tr>
<tr>
<td>TELLURIUM</td>
<td>(Te)</td>
</tr>
<tr>
<td>TERBIUM</td>
<td>(Tb)</td>
</tr>
<tr>
<td>THORIUM</td>
<td>(Th)</td>
</tr>
<tr>
<td>THULIUM</td>
<td>(Tm)</td>
</tr>
<tr>
<td>TUNGSTEN (WOLFRAM)</td>
<td>(W)</td>
</tr>
<tr>
<td>URANIUM</td>
<td>(U)</td>
</tr>
<tr>
<td>VANADIUM</td>
<td>(V)</td>
</tr>
<tr>
<td>YTTERBIUM</td>
<td>(Yb)</td>
</tr>
</tbody>
</table>
Appendix 2. The international nuclear event scale

for prompt communication of safety significance

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>DESCRIPTOR</th>
<th>CRITERIA</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCIDENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MAJOR ACCIDENT</td>
<td>External release of a large fraction of the radioactive material in a large facility (e.g. the core of a power reactor). This would typically involve a mixture of short and long-lived radioactive fission products (in quantities radiologically equivalent to more than tens of thousands terabecquerels of iodine-131). Such a release would result in the possibility of acute health effects; delayed health over a wide area, possibly involving more than one country; long-term environmental consequences.</td>
<td>Chernobyl NPP, USSR (now in Ukraine), 1986</td>
</tr>
<tr>
<td>6</td>
<td>SERIOUS ACCIDENT</td>
<td>External release of radioactive material (in quantities radiologically equivalent to the order of thousands to tens of thousands of terabecquerels of iodine-131). Such a release would be likely to result in full implementation of countermeasures covered by local emergency plans to limit serious health effects.</td>
<td>Kyshtym Reprocessing Plant, USSR (now in Russia), 1957</td>
</tr>
<tr>
<td>5</td>
<td>ACCIDENT WITH OFF-SITE RISK</td>
<td>External release of radioactive material (in quantities radiologically equivalent to the order of hundreds to thousands of terabecquerels of iodine-131). Such a release would be likely to result in partial implementation of countermeasures covered by emergency plans to lessen the likelihood of health effects.</td>
<td>Windscale Pile, UK, 1957</td>
</tr>
<tr>
<td>4</td>
<td>ACCIDENT WITHOUT SIGNIFICANT OFF-SITE RISK</td>
<td>Severe damage to the nuclear facility. This may involve severe damage to a large fraction of the core of a power reactor, a major criticality accident or a major fire or explosion releasing large quantities of radioactivity within the installation.</td>
<td>Three Mile Island, USA, 1979</td>
</tr>
<tr>
<td>3</td>
<td>SEVERE DAMAGE</td>
<td>Significant damage to the nuclear facility. Such an event may involve damage to a large fraction of the core of a power reactor, a major criticality accident or a major fire or explosion releasing large quantities of radioactivity within the installation.</td>
<td>Windscale</td>
</tr>
</tbody>
</table>
The doses are expressed in terms of effective dose equivalent (whole body dose). Those criteria where appropriate can also be expressed in terms of corresponding annual effluent discharge limits authorized by National Authorities.

<table>
<thead>
<tr>
<th>Level</th>
<th>Type</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>SERIOUS INCIDENT</td>
<td>External release of radioactivity above authorized limits, resulting in a dose to the most exposed individual off site of the order of tenths of millisievert. With such a release, off-site protective measures may not be needed. On-site events resulting in doses to workers sufficient to cause acute health effects and/or an event resulting in a severe spread of contamination for example a few thousand terabecquerels of activity released in a secondary containment where the material can be returned to a satisfactory storage area.</td>
<td>Reprocessing Plant, UK, 1973; Saint-Laurent NPP, France, 1980</td>
</tr>
<tr>
<td>2</td>
<td>INCIDENT</td>
<td>Incidents with significant failure in safety provisions but with sufficient defense in depth remaining to cope with additional failures. An event resulting in a dose to a worker exceeding a statutory annual dose limit and/or an event which leads to the presence of significant quantities of radioactivity in the installation in areas not expected by design and which require corrective action.</td>
<td>Buenos Aires Critical Assembly, Argentina, 1983</td>
</tr>
<tr>
<td>1</td>
<td>ANOMALY</td>
<td>Anomaly beyond the authorized operating regime. This may be due to equipment failure, human error or procedural inadequacies. (Such anomalies should be distinguished from situations where operational limits and conditions are not exceeded and which are properly managed in accordance with adequate procedures. These are typically "below scale".)</td>
<td>Vandellos NPP, Spain, 1989</td>
</tr>
<tr>
<td></td>
<td>BELOW SCALE/ ZERO</td>
<td>NO SAFETY SIGNIFICANCE</td>
<td></td>
</tr>
<tr>
<td>AC power transmission</td>
<td>S24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abnormal reactor operations</td>
<td>S21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorbed dose</td>
<td>S61, S62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerator shielding</td>
<td>S43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerators, particle</td>
<td>S43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accident liability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nuclear reactor</td>
<td>S22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accidents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fuel processing cycle</td>
<td>S11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nuclear reactor</td>
<td>S21, S22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>radiation source technology</td>
<td>S07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>real accidents</td>
<td>S21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acid mine drainage</td>
<td>S01, S54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acid rain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abatement</td>
<td>S29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aquatic and atmospheric aspects</td>
<td>S54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>biological effects</td>
<td>S63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>corrosive effects on building materials</td>
<td>S36, S54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cultural resources</td>
<td>S54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>deposition</td>
<td>S54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>health hazards</td>
<td>S63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>legislation and regulations</td>
<td>S29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>monitoring</td>
<td>S54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>planning and policy aspects</td>
<td>S29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>terrestrial aspects</td>
<td>S54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>transport</td>
<td>S54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidification, ecological effects</td>
<td>S36, S54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoustics</td>
<td>S71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>analysis and determination</td>
<td>S37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chemical separation studies</td>
<td>S11, S38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activation analysis</td>
<td>S37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of (nuclear) institutes and programs</td>
<td>S99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced automotive propulsion systems</td>
<td>S33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age determination (isotope dating)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>objects</td>
<td>S37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>terrestrial or extraterrestrial material</td>
<td>S58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agreements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>safeguards</td>
<td>S98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>S60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>energy conservation</td>
<td>See also S32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hot water use</td>
<td>See also S20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>solar process heat</td>
<td>See also S14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air conditioning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>solar</td>
<td>S14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air pollution</td>
<td>S54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>biological effects</td>
<td>See also S63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>biomass use and production</td>
<td>See also S09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>coal use and processing</td>
<td>See also S01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>effects on building materials</td>
<td>See also S36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
effects on service life See also S54
environmental transport See also S29
flue gas, purification See also S01, S02, S20
geothermal energy production See also S15
materials effects See also S36
natural gas production and use See also S03
nuclear fuel production and use See also S11
nuclear reactors See also S22
oil shale production or use See also S04
petroleum use and production See also S02
policy See also S29
radioactive effluents See also S11, S22
regulations See also S29
socioeconomic aspects See also S29
tar sands processing and use See also S04
waste use and production See also S09

Air pollution control S54
 automobiles See also S33
 coal See also S01
 flue gas See also S01, S20
 fossil-fueled power plants See also S20
 natural gas See also S03
 oil shales See also S04
 tar sands See also S04
Air quality S29
Aircraft propulsion reactors S21
Alcohol fuels S09, S10
Allocations S29
Alloys S36
Alpha decay S73
Alpha particle confinement (plasma) S70

Amerarium
 analysis and determination S11, S37
 design and operation of radiation sources S07
 radiochemical behavior S11, S38
 separation techniques S11, S38

Ammonia
 biological effects S63
 biosynthesis S09
 chemical preparation S10
 environmental aspects S54
 health hazards S63
 production S09, S10
 safety S09, S10
Analytical chemistry S37
Anatomy S60

Animal husbandry
 tracer techniques S60
Anti de Sitter space S72
Appliances, energy-efficient S32
Approximations S97
Aquatic ecology S54
Aquatic waste disposal S54

Architecture
energy conservation S32
solar S14

Arms control S98
 planning and policy See also S29
treaties See also S29
Artificial intelligence S97
Assessment of technology impacts S29

Astatine
 analysis and determination S11, S37
 radiochemical behavior S11, S38
 separation techniques S11, S38
Astronomy S79
Astrophysics S79
Atmospheric chemistry S54

Atmospheric motion
 radioactive contaminants S54
Atom collisions S74, S75

Atomic beams
 application in fusion technology S70
 application in hot atom chemistry S38
 interactions with solids S75
Atomic models S74
Atomic physics S74
Atomic properties, experimental S74
Atomic spectra S74
Atomic theory S74

Automation
 coal mining S01

Automobile engines S33
 air pollution control S54

Automobiles S33
 emission control See also S54
 energy conservation See also S32
 fuel substitution See also S08, S29
Automotive propulsion systems S33

Autoradiography S07
Axial-vector currents S72
BHWR-type reactors S21
BWR-type reactors S21

Bacteria
 radiation effects on S60, S63

Bacteriophages
 radiation effects on S63
 Bag models S72
 Baryons S72
 Beam dynamics S43
 Beam transport systems S43

Behavior
 living organisms S60

Berkelium
 analysis and determination S11, S37
 radiochemical behavior S11, S38
 separation techniques S11, S38

Beryllium
analysis and determination S11, S37
preparation and fabrication S36
radiochemical behavior S11, S38
separation techniques S11, S38
structure and physical properties S36
Beta decay S73
Bibliographies S96
Biochemistry S60
Biological radiation effects S63
Biology S63
Biomass S09
 policy and planning S29
Biomass fuels S09
Biomedical radiography S61, S62
Biomedical sciences S60
 biological radiation effects See also S63
 chemicals metabolism and toxicology See also S63
 electricity effects See also S63
 electromagnetic radiation effects See also S63
 environmental pollutants See also S63
 laser radiation effects See also S63
 medicine See also S62
 microwave radiation effects See also S63
 noise effects See also S63
 thermal effects See also S54, S63
 toxicity of chemicals See also S63
 ultraviolet radiation effects See also S63
Biomimetic processes
 solar energy conversion S14
Biosynthesis
 hydrogen production S08
Biotechnology
 applied studies S09
 basic studies S60
Black holes S79
Blanket engineering
 for fission reactors S21, S22
 for fusion power plants S70
Body burden S61, S63
Boiling water reactors S21
Boom towns S29
Bootstrap theory S72
Bosch process
 hydrogen production S08
Branes S72
Brayton power cycles S42
Breeder reactors S21
Breeding animals S60
Breeding blankets S70
Building codes and standards S32
Building materials
 energy efficiency S32
 life cycle S54
 properties S36
Buildings S32

By-products
- biomass S09
- coal S01
- geothermal energy S15
- hydrogen fuel S08
- natural gas S03
- nuclear fuel S11
- oil shale S04
- petroleum S02
- synthetic fuels S10
- tar sands S04

C1 processes S01
- CANDU-type reactors S21
- CMB radiation S79
- CP invariance S72
- CPT theorem S72
- Calculation methods S97

Californium
- analysis and determination S11, S37
- design and operation of radiation sources S07
- radiochemical behavior S11, S38
- separation techniques S11, S38

Cancer S62, S63
- Capacity building S96
- Carbon corrosion S36

Carbon dioxide
- environmental effects S54
- greenhouse effect S54

Carbon monoxide control
- pollution control S33, S54

Carbonization
- coal S01

Cells
- cell culture techniques S60
- chemical effects on S63
- morphology S60
- radiation effects on S63
- radioisotopes in S63

Central receiver power systems S14

Ceramics S36

Cermets S36

Charcoal S09

Charged particle transport S73

Chemical effluents
- air S54
- diffusion S54
- ecological concentration S54
- metabolism S63
- nuclear reactors S22, S54
- soil S54
- toxicity S63
- water S54
Combined cycle power plants S20

Combustion
- biomass fuels S09
- chemistry S37
- coal S01
- hydrogen S08
- natural gas S03
- petroleum S02
- petroleum products S02
- synthetic fuels S10

Combustion systems S42
Commercial waste management S32
Commercialization S29
Community energy systems S32
Composite materials S36

Compressed gases
- energy storage S25

Computer architecture S97
Computer codes S97
Computer programs S97
Computerized models S97
Computers S97
Concentrators, solar S14
Concrete S36
Condensed matter S75
Congressional hearings S29
Conservation laws (physics) S72

Construction economics
- nuclear power plant S21

Consumer motivation S29, S32
Consumer products S32

Containers
- radioactive materials S42

Contamination, radioactive
- monitoring of, in earth atmosphere S54
- monitoring of, in soils S54
- monitoring of, in surface waters S54
- of food and animal feed S60
- of food chain S54
- of man, animals, plants, microorganisms S63
- of materials, structures, equipment, prevention of S61
- of the environment as consequence of accidents S11, S21, S54

Control systems
- coal mining S01
- fusion S70
- nuclear reactor S22
- vehicle emission S33

Cooling systems
- buildings S32
- nuclear reactors S22
- thermonuclear reactors S70

Cooling towers
- thermal plumes S20, S54
Cooling, solar S14
Corrosion S36
Corrosive effects on materials in environment S54
Cosmic microwave background S79
Cosmic radiation S79
Cosmic rays propagation S79
Cosmic strings S79
Cosmology S79, S79
Cost benefit studies S29, S54
Criticality accidents S21, S22

Criticality studies
nonreactor S42

Crops S60
Cryogenic devices S71
Cryogenic equipment S71
Cryogenic power transmission S24
Cryogenic storage, hydrogen S08
Cryogenics S71

Cultural objects
degradation S29, S36, S54

Curium
analysis and determination S37
chemical separation studies S11, S38
Current algebra S72
Current drive, plasma S70
Cytology S60

DC power transmission S24
Decommissioning, fuel cycle installations See also S11
accelerators See also S43
fuel fabrication plants See also S22
nuclear equipment See also S42
specific reactors See also S21

Dams
hydropower S13

Dark energy S79
Dark matter S79
Data libraries S97
Database management S97
Daylighting S32
De Sitter space S72

Decontamination
chemical S38, S54
of earth atmosphere S54
of food and animal feed S60
of man, animals, plants, microorganisms, materials, structures, equipment S61
of soils S54
of surface waters S54

Degradation
composites S36
cultural objects S36, S54
materials S36
plastics S36

Denitrification
flue gas S01, S20, S54
natural gas S03
shale oil S04
tar sands S04

Desulfurization
coal S01
flue gas S01, S02, S20, S54
natural gas S03
petroleum S02
shale oil S04
tar sands S04

Deuterium
heavy water production S07
isotope separation S07
Deuteron reactions S73

Diagnostic techniques
medicine S62
plasma S70

Diesel engines
automobile S33

Direct energy conversion
EHD generators S30
MHD generators S30
fuel cells S30
in fusion power plants S70
physics S75
thermionic converters S30
thermoelectric generators S30

Direct energy utilization
geothermal energy S15

Diseases
basic studies of human S60, S63
basic studies of non-human S63
diagnosis of human S62
new applications of tracers S60, S63
therapy of human S62
Disinfestation by radiation techniques S60

Dispersion relations
elementary particles S72

Dissociation
atomic S74
Distributed collector solar power systems S14

District cooling
public utilities S32

District heating
policy S29
Diverters (fusion energy) S70
Documentation S96
Dosemeters S46
Dosimetry S61

Drilling
equipment S42
facilities S42
geothermal S15
<table>
<thead>
<tr>
<th>Category</th>
<th>Subcategories</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>natural gas</td>
<td></td>
<td>S03</td>
</tr>
<tr>
<td>petroleum</td>
<td></td>
<td>S02</td>
</tr>
<tr>
<td>Dry storage</td>
<td>spent fuel</td>
<td>S11</td>
</tr>
<tr>
<td>Drying</td>
<td>solar</td>
<td>S14</td>
</tr>
<tr>
<td>Ducts</td>
<td>MHD generators</td>
<td>S30</td>
</tr>
<tr>
<td></td>
<td>Early universe</td>
<td>S79</td>
</tr>
<tr>
<td></td>
<td>Earth atmosphere</td>
<td>S54</td>
</tr>
<tr>
<td></td>
<td>Earth satellites</td>
<td>S79</td>
</tr>
<tr>
<td></td>
<td>Earth-sheltered buildings</td>
<td>S29</td>
</tr>
<tr>
<td></td>
<td>Earthquakes</td>
<td>S58</td>
</tr>
<tr>
<td>Economics</td>
<td>air transport</td>
<td>S32</td>
</tr>
<tr>
<td></td>
<td>alcohol fuels</td>
<td>S09, S10</td>
</tr>
<tr>
<td></td>
<td>batteries</td>
<td>S25</td>
</tr>
<tr>
<td></td>
<td>biomass fuels</td>
<td>S09</td>
</tr>
<tr>
<td></td>
<td>coal industry</td>
<td>S01</td>
</tr>
<tr>
<td></td>
<td>electric power</td>
<td>S20, S29</td>
</tr>
<tr>
<td></td>
<td>energy industry</td>
<td>S29</td>
</tr>
<tr>
<td></td>
<td>energy storage</td>
<td>S25</td>
</tr>
<tr>
<td></td>
<td>fossil fuels</td>
<td>S29</td>
</tr>
<tr>
<td></td>
<td>fossil-fueled power plants</td>
<td>S20</td>
</tr>
<tr>
<td></td>
<td>fusion technology</td>
<td>S70</td>
</tr>
<tr>
<td></td>
<td>geothermal energy</td>
<td>S15, S29</td>
</tr>
<tr>
<td></td>
<td>hydroenergy</td>
<td>S13</td>
</tr>
<tr>
<td></td>
<td>hydrogen economy</td>
<td>S08, S29</td>
</tr>
<tr>
<td></td>
<td>land transport</td>
<td>S32</td>
</tr>
<tr>
<td></td>
<td>marine transport</td>
<td>S32</td>
</tr>
<tr>
<td></td>
<td>natural gas</td>
<td>S03</td>
</tr>
<tr>
<td></td>
<td>natural gas industry</td>
<td>S03</td>
</tr>
<tr>
<td></td>
<td>nuclear power plants</td>
<td>S21, S29</td>
</tr>
<tr>
<td></td>
<td>nuclear safeguards</td>
<td>S98</td>
</tr>
<tr>
<td></td>
<td>oil shale industry</td>
<td>S04</td>
</tr>
<tr>
<td></td>
<td>oil shales</td>
<td>S04</td>
</tr>
<tr>
<td></td>
<td>petroleum industry</td>
<td>S02, S29</td>
</tr>
<tr>
<td></td>
<td>pipeline transport</td>
<td>S32</td>
</tr>
<tr>
<td></td>
<td>planning</td>
<td>S29</td>
</tr>
<tr>
<td></td>
<td>plutonium recycling</td>
<td>S11</td>
</tr>
<tr>
<td></td>
<td>policy</td>
<td>S29</td>
</tr>
<tr>
<td></td>
<td>radiation sources</td>
<td>S07, S29</td>
</tr>
<tr>
<td></td>
<td>radioactive waste disposal</td>
<td>S11, S12</td>
</tr>
<tr>
<td></td>
<td>rail transport</td>
<td>S32</td>
</tr>
<tr>
<td></td>
<td>renewable energy sources</td>
<td>S29</td>
</tr>
<tr>
<td></td>
<td>resource development</td>
<td>S29</td>
</tr>
<tr>
<td></td>
<td>solar energy</td>
<td>S14, S29</td>
</tr>
<tr>
<td></td>
<td>spent fuels</td>
<td>S11</td>
</tr>
<tr>
<td></td>
<td>synthetic fuels</td>
<td>S10, S29</td>
</tr>
<tr>
<td></td>
<td>tar sand industry</td>
<td>S04</td>
</tr>
<tr>
<td></td>
<td>tar sands</td>
<td>S04</td>
</tr>
<tr>
<td></td>
<td>tidal power</td>
<td>S16, S29</td>
</tr>
<tr>
<td></td>
<td>uranium enrichment</td>
<td>S11</td>
</tr>
<tr>
<td></td>
<td>wind power</td>
<td>S17</td>
</tr>
</tbody>
</table>

https://nkp.iaea.org/INISSubjectCate... Index
Education S96
Education and training S96
Elastomers S36
Electric batteries S25
Electric energy storage
 capacitors S25
Electric generators S20
 superconducting S75
Electric motors
 superconducting S75
Electric power
 biological effects S63
 coalmines S01
 consumption S32
 consumption statistics S29
 demand S29
 distribution S24, S29
 economics S20, S29
 generation S20, S29
 hazards S63
 market S29
 policy S29
 prices S29
 public relations S29
 thefts S29
 transmission S24, S29
 utility management S29
Electric power engineering S20, S24
Electric power generation S20, S29
 tidal power See also S16
 wind power See also S17
Electric power plants
 fossil fuel S20
 nuclear S21
 solar photovoltaic S14
 solar thermal S14
 tidal S16
Electric power systems
 central receiver solar S14
 distributed collector solar S14
 ocean thermal S14
Electric utilities S29
Electricity
 biological effects S63
Electrochemistry S37
 fuel cells S30
 Electrohydrodynamic generators S30
Electrohydrodynamics
 theoretical S75
Electrolysis
 hydrogen production S08
 Electromagnetic form factors S72
Electromagnetic interactions S72
 biological effects S63
Electromagnetic transitions S73
Electron attachment S74
Electron beam fusion S70
Electron beams production S71
Electron collisions S74, S75
Electron detachment S74
Electron sources S71
Electronic circuits S42
Electron sources production S71
Electron collisions theory S74
Electronic systems radiation effects S46
Electroweak interaction models S72
Elementary particles S72
Embryology S60
Emergency measures to ensure energy supplies S29
Employment, social impact S29
Energy accounting S29
Energy analysis S29
Energy auditing S29
technical aspects S32
Energy conservation S32
agriculture See also S32
buildings See also S32
environmental aspects See also S29, S54
health hazards See also S63
industry See also S32
policy See also S29
public opinion See also S29
socioeconomic aspects See also S29
statistics See also S29
thermionic See also S30
thermoelectric See also S30
tidal power plants See also S16
transportation See also S32
waste heat utilization See also S32
Energy consumption S29, S32
agriculture See also S32
buildings See also S32
end use sectors See also S29
industry See also S32
transportation See also S32
Energy conversion
direct S30
electrohydrodynamics S30
fuel cells S30
geothermal S15
magnetohydrodynamics S30
photovoltaic S14
solar S14
thermionic S30
thermoelectric S30
tidal S16
water wave S16
wind S17
Energy demand S29
Energy expenditures S29
Energy impacts S29

Energy levels,
nuclear S73

Energy management S29
technical aspects S32
Energy modeling S97
Energy policy S29
Energy prices S29
Energy programs S29
Energy regulations S29
Energy research S29

Energy source development
sociology S29

Energy sources
agriculture S32
conservation S29
development S29
industry S32

Energy storage S25
fusion energy See also S70
off-peak See also S20
planning and policy See also S29
policy See also S29
pumped water See also S13
safety See also S25
Energy substitution S29
Energy supply S29
Energy transport, policy S29
Energy utilization S29
Energy-level transitions, nuclear S73
Engineering S42

Engines S33
solar heat S14
Enhanced recovery S02
Enriched uranium S11, S29
Environment S54

Environmental aspects policy S29
coal See also S01, S54
fusion fuels See also S54
geothermal See also S15, S54
hydrocarbon fuel See also S09, S10, S54
hydrogen fuels See also S08, S54
inorganic hydrogen compound fuels See also S10
natural gas See also S03, S54
nuclear fuel See also S11, S54
nuclear fuel cycle See also S11
oil shale See also S04, S54
petroleum See also S02, S54
solar energy See also S14, S54
Environmental assessment S54
Environmental impact statements S29
Environmental legislation S29
Environmental materials S36
Environmental policy S29
Environmental quality S29
Environmental regulations S29
Environmental surveys S54
Erosion S36
Ethane
Ethanol
Exhaust gases
Exhaust systems (fusion) S70
Exploration

- tar sands See also S04, S54
- tidal power See also S16, S54
- use and production of alcohol fuels See also S09, S10, S54
- water resources See also S54
- wind power See also S17, S54

Environment standards S29
Environmental transport S54

- coal industry See also S01
- electric power plants See also S20
- fossil-fueled power plants See also S20
- geothermal energy See also S15
- hydroelectric power See also S13
- natural gas industry See also S03
- nuclear fuels See also S11
- nuclear power plants See also S21, S22
- nuclear ships See also S21
- oil shale industry See also S04
- petroleum industry See also S02
- solar industry See also S14
- tar sands industry See also S04
- tidal power See also S16
- wind power See also S17

- nuclear reactors See also S22
- oil shale See also S04
- tar sands See also S04
- tidal power See also S16
- wind power See also S17

- cultural resources S54
- biosynthesis S09
- biosynthesis S09
- air pollution control S33, S54
- coal S01
- geothermal S15
- natural gas S03
- oil shale S04
- petroleum S02
- thorium ores S11
- uranium ores S11
Extensive air showers S79
External combustion engines S33

Extraction
 particle beam S43
Extragalactic objects S79
Extraterrestrial material S79
Federal research S29
Feed materials plants S11
Field theories S72
First wall S70
Fischer-Tropsch synthesis S01
Fission, theory S73
Flames S37
Florida current S13

Flue gas
 denitrification S01, S20, S54
 desulfurization S01, S02, S20, S54
 environmental aspects S20, S54
 fossil-fueled power plants S20
 purification S01, S20, S54
 radioactivity S01, S54
Fluid dynamics S71, S75
Fluid flow S42
Fluidized-bed combustion coal S01
Fluorescence S37, S74

Fly ash
 electric power plants S20, S54
 waste management S01, S20, S54

Flywheels
 energy storage S25
 propulsion S33
Food chains S54
Food preservation S60

Fossil fuels
 energy policy S29
 power plants S20
Fossil-fueled power plants S20
 environmental aspects See also S29, S54
 land use See also S54
 pollution control See also S54
 power generation See also S29
 site selection See also S54
 thermal effluents See also S54
Fuel cells S30
Fuel conservation S32

Fuel consumption
 agriculture S32
 buildings S32
 coal S01
 end use sectors S29
 industries S32
 natural gas S03
 oil shales S04
 petroleum S02
tar sands S04
transportation S32
Fuel gas, properties S01
Fuel oils S02, S10
Fuel pellets - fusion energy S70
Fuel reprocessing plants S11
Fuel slurries - coal S01

Fuel substitution
automobiles S33
power plants S20

Fueling systems - fusion energy S70

Fuels
automotive S33
biomass S09
coal S01
fusion S70
hydrocarbon S09, S10
inorganic hydrogen S08, S10
natural gas S03
shale oils S04
synthetic S10
tar sands S04

Fusion energy S70
Fusion fuel cycle economics S70

Fusion fuels S70
economics See also S29
environmental aspects, use and production See also S54
policy See also S29
regulations See also S29

Fusion reactions (plasma) S70
Fusion technology S70
Galactic objects S79
Galaxies S79
Gamma decay S73

Gamma spectroscopy S37
condensed matter S75
Gamma transitions S73
Gamma transport theory S73
Gamma-ray telescopes S79
Gas flow S42
Gas spills S03
Gaseous diffusion process S11
Gaseous wastes S20, S54

Gasification
biomass S09
coal S01
Gauge bosons S72
General relativity S71
Genetic engineering S60
Genetics S60
Geochemical surveys S15, S58

Geochemistry S58
geochemical theory S15
Geochronology \(\text{S58} \)
Geological materials - weathering \(\text{S54} \)

Geology \(\text{S58} \)
- coal \(\text{See also \ S01} \)
- geothermal systems \(\text{See also \ S15} \)
- hydroelectric \(\text{See also \ S13} \)
- natural gas \(\text{See also \ S03} \)
- oil shale \(\text{See also \ S04} \)
- petroleum \(\text{See also \ S02} \)
- radioactive waste disposal \(\text{See also \ S12} \)
- tar sands \(\text{See also \ S04} \)
- thorium ores \(\text{See also \ S11} \)

Geophysical surveys \(\text{S58} \)
Geophysics \(\text{S58} \)
Geosciences \(\text{S58} \)

Geothermal energy \(\text{S15} \)
- economic aspects \(\text{See also \ S29} \)
- environmental aspects, use and production \(\text{See also \ S54} \)
- legal aspects \(\text{See also \ S29} \)
- policy \(\text{See also \ S29} \)
- waste management \(\text{See also \ S54} \)

Geothermal engineering \(\text{S15} \)
Geothermal exploration \(\text{S15} \)

Geothermal fields \(\text{S15} \)
- site surveys \(\text{S54} \)

Geothermal power plants \(\text{S15} \)
Geothermal resources \(\text{S15, S29} \)
Geothermal systems \(\text{S15} \)
Geothermal theory \(\text{S15} \)
Geothermometry \(\text{S15} \)
Giant resonance \(\text{S73} \)
Gluons \(\text{S72} \)

Government policies \(\text{S29} \)
- coal \(\text{See also \ S01} \)
- geothermal energy \(\text{See also \ S15} \)
- hydroenergy \(\text{See also \ S13} \)
- hydrogen economy \(\text{See also \ S08} \)
- isotope technology \(\text{See also \ S11} \)
- natural gas \(\text{See also \ S03} \)
- nuclear fuels \(\text{See also \ S11} \)
- nuclear weapons \(\text{See also \ S98} \)
- oil shales \(\text{See also \ S04} \)
- petroleum \(\text{See also \ S02} \)
- radiation source technology \(\text{See also \ S11} \)
- synthetic fuels \(\text{See also \ S10} \)
- tar sands \(\text{See also \ S04} \)

Graphite \(\text{S36} \)
Graphite-moderated reactors \(\text{S21} \)
Gravitation theory \(\text{S71} \)
Gravitational collapse \(\text{S79} \)
Gravitational wave detectors \(\text{S79} \)
Greenhouse effect \(\text{S54} \)
Ground water \(\text{S54} \)
Hadron interactions \(\text{S72} \)
<table>
<thead>
<tr>
<th>Topic</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handling equipment</td>
<td>S42</td>
</tr>
<tr>
<td>Hazardous materials</td>
<td>S29</td>
</tr>
<tr>
<td>pollution control</td>
<td>S54</td>
</tr>
<tr>
<td>waste disposal</td>
<td>S54</td>
</tr>
<tr>
<td>Health and safety</td>
<td>S60</td>
</tr>
<tr>
<td>coal miners</td>
<td>S01</td>
</tr>
<tr>
<td>human populations</td>
<td>S29</td>
</tr>
<tr>
<td>miners</td>
<td>S01, S11</td>
</tr>
<tr>
<td>natural gas industry</td>
<td>S03</td>
</tr>
<tr>
<td>nuclear fuels industry</td>
<td>S11</td>
</tr>
<tr>
<td>oil shale industry</td>
<td>S04</td>
</tr>
<tr>
<td>personnel chemical</td>
<td>S63</td>
</tr>
<tr>
<td>radiological</td>
<td>S11, S22, S63</td>
</tr>
<tr>
<td>tar sands industry</td>
<td>S04</td>
</tr>
<tr>
<td>Health physics</td>
<td>S61</td>
</tr>
<tr>
<td>Heat pumps</td>
<td>S32</td>
</tr>
<tr>
<td>Heat recovery</td>
<td></td>
</tr>
<tr>
<td>electric power generation</td>
<td>S20</td>
</tr>
<tr>
<td>industries</td>
<td>S32</td>
</tr>
<tr>
<td>use policy</td>
<td>S29</td>
</tr>
<tr>
<td>Heat storage</td>
<td>S25</td>
</tr>
<tr>
<td>solar energy</td>
<td>S14</td>
</tr>
<tr>
<td>Heat transfer</td>
<td>S42</td>
</tr>
<tr>
<td>air plumes</td>
<td>S54</td>
</tr>
<tr>
<td>power plant equipment</td>
<td>S20</td>
</tr>
<tr>
<td>soil heat</td>
<td>S54</td>
</tr>
<tr>
<td>water plumes</td>
<td>S54</td>
</tr>
<tr>
<td>Heat utilization</td>
<td>S29</td>
</tr>
<tr>
<td>agriculture</td>
<td>S32</td>
</tr>
<tr>
<td>geothermal</td>
<td>S15</td>
</tr>
<tr>
<td>power plants</td>
<td>S20</td>
</tr>
<tr>
<td>solar thermal</td>
<td>S14</td>
</tr>
<tr>
<td>waste</td>
<td>S32</td>
</tr>
<tr>
<td>Heated effluents</td>
<td>S54</td>
</tr>
<tr>
<td>Heating</td>
<td></td>
</tr>
<tr>
<td>buildings</td>
<td>S32</td>
</tr>
<tr>
<td>geothermal</td>
<td>S15</td>
</tr>
<tr>
<td>solar</td>
<td>S14</td>
</tr>
<tr>
<td>Heating systems</td>
<td>S32</td>
</tr>
<tr>
<td>fusion energy</td>
<td>S70</td>
</tr>
<tr>
<td>Heavy water</td>
<td>S07</td>
</tr>
<tr>
<td>Heavy-ion fusion reactions</td>
<td>S73</td>
</tr>
<tr>
<td>Heavy-ion reactions</td>
<td>S73</td>
</tr>
<tr>
<td>Heavy-water moderated reactors</td>
<td>S21</td>
</tr>
<tr>
<td>Heliostats</td>
<td>S14</td>
</tr>
<tr>
<td>Helium II</td>
<td>S75</td>
</tr>
<tr>
<td>Helium reactions</td>
<td>S70, S73</td>
</tr>
<tr>
<td>Higgs bosons</td>
<td>S72</td>
</tr>
<tr>
<td>High energy physics</td>
<td>S72</td>
</tr>
<tr>
<td>instrumentation</td>
<td>S46</td>
</tr>
<tr>
<td>High-Tc superconductors</td>
<td>S75</td>
</tr>
<tr>
<td>High-temperature gas-cooled reactors</td>
<td>S21</td>
</tr>
<tr>
<td>Horticulture</td>
<td>S60</td>
</tr>
<tr>
<td>Hot-atom chemistry</td>
<td>S38</td>
</tr>
</tbody>
</table>
Hubble constant S79
Human resources planning S96
Hybrid reactors S70

Hybrid systems
- solar energy S14

Hydrazine S10
Hydrocarbon fuels S01, S09, S10

Hydrocarbons
- biological effects S63
- coal products S01
- ecological concentration S54
- environmental transport S54
- metabolism S63
- petroleum products S02
- pollution control S54
- toxicity S63

Hydroelectric Power S13
- environmental aspects See also S54
- geology See also S58
- land use See also S54
- licensing See also S29
- meteorology See also S54
- planning See also S29
- policy See also S29
- regulations See also S29
- site surveys See also S54
- thermal effluents See also S54

Hydrogen S08
- energy planning and policy See also S29
- inorganic compound fuels See also S10
- policy See also S29

Hydrogen fuels
- automobile S33
- inorganic compounds S10
- transportation sector S33

Hydrogen production S08
Hydrogen storage S08
Hydrogen-based economy S08

Hydrology S58
- oil shales See also S04
- site surveys See also S54
- tar sands See also S04

Hydroxyl radicals S38
Hyperfine-structure constants S74
Hypernuclei S73
Hyperon reactions S73
Hyperonic atoms S74
Impact fusion S70

Incineration
- electric power generation S20, S54

Indoor air pollution S54
- socioeconomic aspects S29
Indoor air quality S54
Industrial equipment energy conservation S32

Industrial plants
- pollution control S54

Industrial process heat
- solar S14

Industrial processes
- energy conservation S32

Industrial waste management S32

Industrial waste recycling
- energy recovery S32

Industries
- energy conservation S32
- Inertial confinement fusion S70

Inflationary universe S79

Information handling

Information retrieval

Information systems

Injection
- biological-medical S62
- particle beam S43

Inorganic chemistry S37

Inorganic hydrogen compound fuels S10

Instrumentation
- miscellaneous S47
- radiation S46

Intermediate bosons S72

Intermetallic compounds S36

Internal combustion engines S33

Interplanetary space S79

Interstellar space S79

Invariance principles S72

Invertebrates
- baseline ecology S54
- chemical toxicology S63

Ion beam fusion S70

Ion beams - production S71

Ion channeling S36, S75

Ion collisions S74, S75

Ion implantation S75

Ion optics S43

Ion sources
- accelerator S43
- design S71

Irradiation effects
- instruments S46
- materials S36

Irradiation reactors S21

Isotope dating S58

Isotope effects S37

Isotope production
- radioisotopes S38
- reactors S21

Isotope separation
heavy water S07
industrial processes S07
physicochemical S37
radioisotopes S38
stable isotopes, chemical S37
Isotopic exchange S37
Josephson junctions S75
Kaluza-Klein Theories S72
Knowledge management S96
Knowledge preservation S96
Knowledge transfer S96

Labeling
radioisotopes S38
stable isotopes S37

Labelled compounds
diagnostic uses S62
preparation S37, S38
stable isotopes S37
therapeutic uses S62
tissue distribution S60, S62

Land pollution S54
policy S29

Land use S29, S54
conservation aspects See also S32
fossil-fueled power plants See also S20

Landscaping
Laser fusion S70
aesthetics S29
energy conservation S32
environmental effects S54
land reclamation S54
pollution control S54
Laser isotope separation S11
Lasers S42, S63
Lattice field theory S72
Lattice gauge theory S72
Learning and training S96

Legal aspects
nuclear reactor accidents S22
power reactors S21

Legislation S29
biomass fuels See also S09
coal industry See also S01
energy storage See also S25
fossil-fueled power plants See also S20
geothermal energy See also S15
hydro energy See also S13
hydrogen industry See also S08
natural gas industry See also S03
nuclear fuels See also S11
nuclear power plants See also S21
oil shale industry See also S04
petroleum industry See also S02
power transmission and distribution See also S24
solar energy See also S14
synthetic fuels See also S10
tar sands industry See also S04
tidal power See also S16
wave power See also S16
wind energy See also S17

Leptons S72
 reactions S73
Library management S96

Licensing
 hydroelectric power plants S13
 hydropower plants S13
 nuclear power plants S21
 nuclear-powered ships S21
 Lighting systems S32
 Lignite S01
 Limiters (fusion technology) S70
 Liquefaction - coal S01

Liquefied gases
 energy storage S25
 Liquefied natural gas S03

Liquid metals S36
 fluid flow S42
 Load management S29
 Local government research S29

M-theory
 cosmology S79
 quantum fields S72
 MHD equilibrium (plasma) S70
 Magnet coils (fusion technology) S70
 Magnetic confinement (fusion technology) S70
 Magnetic field configurations (fusion) S70

Magnetic fields
 biological effects S63
 physics S71
 Magnetic fusion energy S70
 Magnetic monopoles S72
 Magnetohydrodynamic generators S30
 Magnetohydrodynamics S75
 Mandelstam representation S72
 Marine engineering S42

Marketing
 biomass fuels S09
 coal S01
 electric power S20, S24
 geothermal energy S15
 hydro energy S13
 hydrogen fuel S08
 natural gas S03
 nuclear fuels S11
 oil shales S04
 petroleum S02
 policy S29
 radioisotopes S07
shale oil S04
solar energy S14
synthetic fuels S10
tar sands S04
tidal power S16
wave power S16
wind energy S17

Materials S36
MHD generators See also S30
agriculture See also S60
building systems See also S32
conservation See also S32
electric batteries See also S25
fusion devices See also S32, S70
surface properties general See also S75
thermionic converters See also S30

Materials handling S42
coal S01
Materials recovery S32
Materials studies (fusion) S70
Materials testing S42
Materials testing reactors S21
Mathematical methods S97
Mathematical models S97
Mathematical solutions S97
Mathematics S97
Medical diagnostics S62
Medical physics - general S61
Medical therapy S62
Medicine S62

Membrane theory
cosmology S79
quantum fields S72

Mercury
biological effects S63
environmental chemistry S54
Mesic atoms S74

Mesons S72
reactions S73
Metabolism S60, S63
Metals and alloys S36

Meteorology S54
wind availability S17
Methane S09, S10

Methanol S09, S10
C1 processes See also S01
automotive fuel See also S33
goal products See also S01
Microbiology S60
Mine acid drainage S01, S54
Mine shafts S01
Mineral properties geothermal science S15
Mineralogy S58

Minerals
resource management S29

Mining
- coal S01
- oil shale S04
- radioactive ores S11
- tar sands S04
- Mining equipment S42
- Mining facilities S42
- Moessbauer effect (condensed matter) S75
- Molecular beams, production S71
- Molecular biology S60
- Molecular physics S74
- Molecular properties S74
- Molecular spectra S74
- Molecular theory S74
- Morphology S60
- Municipal power systems S32

Municipal waste management
- energy recovery S32
- environmental aspects S54
- Muon-catalyzed fusion S70
- Muonic atoms S74
- Muonium S74

Mutations S63
- agricultural S60
- N/D method S72
- Nanocrystals S77
- Nanodevices S77
- Nanomaterials S77
- Nanomechanics; S77
- Nanomedicine S77
- Nanometrology S77
- Nanoprocesses S77
- Nanoscience S77
- Nanostructures S77
- Nanotechnology S77
- Nanotubes S77

Natural gas S03
- energy planning and policy See also S29
- fuel consumption See also S29
- pollution control See also S54
- transportation applications See also S33
- Natural gas industry S03

Natural resources
- development and utilization S29

Negotiations
- arms control S98
- Net energy evaluation S29

Neutrinos S72
- cosmic S79
- Neutron diffraction (condensed matter) S75
- Neutron stars S79
- Neutron transport theory S73

Neutrons S73
interactions with matter (macro) S75

Nitrogen oxides
flue gas S02, S20, S54
pollution control S54

Noise
biological effects S63
pollution S63
Nondestructive testing S42

Nonlinear optics
atomic theory S74
lasers S42
Nonproliferation policies S98

Nonradioactive wastes
nuclear facilities S12
Nuclear chemistry S38
Nuclear disarmament S98
Nuclear energy - policy S29
Nuclear energy levels S73

Nuclear explosions
legal aspects S98
peaceful uses S42

Nuclear facilities
nonradioactive wastes S12
radioactive wastes S12
Nuclear fission S73
Nuclear forces S73
Nuclear fuel elements S21, S22

Nuclear fuels S11, S22
air pollution See also S54
environmental aspects See also S54
radioactive effluents See also S54
site surveys See also S54
thermal pollution See also S54
water pollution See also S54
Nuclear isospin S73
Nuclear magnetic resonance (condensed matter) S75

Nuclear materials
accountability S98
management S98
Nuclear matter S73
Nuclear models S73
Nuclear moments S73
Nuclear physics S73

Nuclear power
policy S29
social aspects S29
Nuclear reaction analysis S37
Nuclear reactions S73
Nuclear reactor accidents S22
Nuclear reactor safety S22
Nuclear reactor technology S22

Nuclear reactors S21, S22
air pollution See also S54
environmental surveys See also S54
propulsion See also S33
thermal pollution See also S54
water pollution See also S54
Nuclear scattering S73
Nuclear ships S21
Nuclear spectrometers S46
Nuclear spectroscopic instrumentation S46
Nuclear spin S73
Nuclear structure S73

Nuclear techniques
- condensed matter S75
- government policies S29
- proliferation S98
- safeguards S98
Nucleate boiling S42
Nuclei - properties S73
Nucleon reactions S73
Nuclide kinetics S63
Ocean thermal gradient power systems S14
Oceanography S54, S58
Offshore operations S42

Oil sands S04
- policy S29

Oil shale industry S04
- pollution control See also S54
- technology assessment See also S29
Oil shale mining S04
Oil shale products S04

Oil shale use S04
- environmental regulations See also S29, S54
- pollution control See also S54
- waste management See also S54

Oil shales S04
- economics See also S29
- energy planning and policy See also S29
- environmental aspects See also S54
- legislation See also S29
- marketing See also S29
- regulations See also S29
Oil spill effects S02, S54
Oil spills S02
Oil wells S02
Oil yields S04
Optics S71
Ore processing S11
Organic chemistry S37
Oxidation S36
PCAC theory S72
Paints S36, S54
Paleoclimatology S54, S58

Partial oxidation processes
- hydrogen production S08
Particle accelerators S43
Particle decay S72
Particle interactions S72
Particle invariance principles S72
Particle properties S72

Particulates
 biological effects S63
environmental control and monitoring S01, S20, S54
exhaust gas control S33, S54

Pathology S60
Peat S01
Personnel dosimetry S63
Pest control S60
Petrochemicals S01, S02

Petroleum S02
 energy planning and policy See also S29
environmental effects See also S54
regulations See also S29

Petroleum industry S02
 legislation See also S29
pollution control See also S54
technology assessment See also S29

Petroleum products S02

Petrology S58
 coal See also S01
oil shales See also S04
tar sands See also S04

Phantoms S61
Phase studies S36
Phosphorescence S74

Phosphoric acid
 uranium recovery S11

Photochemical processes
 hydrogen production S08
solar energy S14

Photochemistry S37

Photons S72
 reactions S73
Photonuclear reactions S73
Photosynthesis S14
Photovoltaic cells S14
Photovoltaic conversion S14
Physical chemistry S37

Physics
 atomic physics S74
condensed matter physics S75
cryogenics S71
elementary particles S72
general physics S71
molecular physics S74
nuclear physics S73
particle beam production S71
plasma physics S70
radiation physics S73
target preparation S71
<table>
<thead>
<tr>
<th>Category</th>
<th>Subcategories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiology</td>
<td>S60</td>
</tr>
<tr>
<td>Pionic atoms</td>
<td>S74</td>
</tr>
<tr>
<td>Pipelines</td>
<td></td>
</tr>
<tr>
<td></td>
<td>coal S01</td>
</tr>
<tr>
<td></td>
<td>design S42</td>
</tr>
<tr>
<td></td>
<td>development S42</td>
</tr>
<tr>
<td></td>
<td>natural gas S03</td>
</tr>
<tr>
<td></td>
<td>petroleum S02</td>
</tr>
<tr>
<td></td>
<td>testing S42</td>
</tr>
<tr>
<td></td>
<td>transportation S32</td>
</tr>
<tr>
<td>Planetary systems</td>
<td>S79</td>
</tr>
<tr>
<td>Planning and policy</td>
<td>S29</td>
</tr>
<tr>
<td>Plant breeding</td>
<td>S60</td>
</tr>
<tr>
<td></td>
<td>population dynamics See also S54</td>
</tr>
<tr>
<td></td>
<td>radioresistance See also S63</td>
</tr>
<tr>
<td></td>
<td>revegetation See also S54</td>
</tr>
<tr>
<td>Plants</td>
<td>baseline ecology S54</td>
</tr>
<tr>
<td>Plasma</td>
<td>solid state S75</td>
</tr>
<tr>
<td></td>
<td>Plasma disruption S70</td>
</tr>
<tr>
<td></td>
<td>Plasma fluid (thermonuclear) S70</td>
</tr>
<tr>
<td></td>
<td>Plasma heating systems S70</td>
</tr>
<tr>
<td></td>
<td>Plasma impurity control S70</td>
</tr>
<tr>
<td>Plasma phenomena</td>
<td>low energy S71</td>
</tr>
<tr>
<td></td>
<td>Plasma physics S70</td>
</tr>
<tr>
<td></td>
<td>Plasma research S70</td>
</tr>
<tr>
<td>Plasma-facing</td>
<td>components S70</td>
</tr>
<tr>
<td></td>
<td>Plastics S36</td>
</tr>
<tr>
<td></td>
<td>Plutonium recycling S11</td>
</tr>
<tr>
<td>Policy</td>
<td>S29</td>
</tr>
<tr>
<td>Political aspects</td>
<td>S29</td>
</tr>
<tr>
<td>Pollutants</td>
<td>biological effects S63</td>
</tr>
<tr>
<td></td>
<td>ecosystem effects S54</td>
</tr>
<tr>
<td></td>
<td>environmental transport S54</td>
</tr>
<tr>
<td></td>
<td>removal S54</td>
</tr>
<tr>
<td></td>
<td>sampling S54</td>
</tr>
<tr>
<td>Pollution</td>
<td>coal S01, S54</td>
</tr>
<tr>
<td>Pollution control</td>
<td>air pollution S54</td>
</tr>
<tr>
<td></td>
<td>biomass fuels S09</td>
</tr>
<tr>
<td></td>
<td>coal S01</td>
</tr>
<tr>
<td></td>
<td>fossil-fueled power plants S20</td>
</tr>
<tr>
<td></td>
<td>industrial plants S54</td>
</tr>
<tr>
<td></td>
<td>natural gas S03</td>
</tr>
<tr>
<td></td>
<td>oil shales S04</td>
</tr>
<tr>
<td></td>
<td>petroleum S02</td>
</tr>
<tr>
<td></td>
<td>soil pollution S54</td>
</tr>
<tr>
<td></td>
<td>water pollution S54</td>
</tr>
<tr>
<td>Pollution control equipment</td>
<td></td>
</tr>
</tbody>
</table>
basic engineering S54
design for industrial plants S32, S54
environmental use S54
industrial plants S32, S54
methods S54
technology assessment S29

Polymers S36
Positron collisions S74, S75
Positronium S74
Potentiometry S37

Power conversion systems
- fusion energy S70
- hydroelectric S13

Power cycles S42
- external combustion engines See also S33
- internal combustion engines See also S33
- power plants See also S20

Power distribution S24
Power plant hardware S20

Power plants
- air pollution S54
- biomass S20
- environmental aspects S54
- fossil-fueled S20
- geothermal S15
- hydroelectric S13
- land use S54
- nuclear S21
- pollution S54
- refuse-derived fuels S20
- site surveys S54
- thermal effluents S54
- waste-fueled systems S20

Power plants and power generation S20
Power reactors S21

Power supplies
- fusion energy S70

Power transmission and distribution S24
Pressurized water reactors S21
Process heat reactors S21
Programming S97
Proliferation S29, S98
Propulsion reactors S21

Prospecting
- exploratory drilling S15
- geochemical survey methods S58
- geochemical techniques S15
- geophysical survey methods S58
- geophysical techniques S15
- geothermal exploration S15

Protective clothing S42
Protective equipment S42
Protective structures S42
Psychology S60
Public health S60
Public policy S29
Public relations S29, S32

- pollution damage in environment S54

Public services S32
Public utilities S32

Purification
- coal S01
- power plant emissions S20
- shale oil S04

Pyrolysis S37
- coal S01
Quality of life S29
Quantum beams S71
Quantum chromodynamics S72
Quantum computers S77
Quantum cosmology S79
Quantum dots S77
Quantum electrodynamics S72
Quantum entanglement S71
Quantum field theories S72
Quantum fluids S75
Quantum gravity S79
Quantum information S71
Quantum mechanics S71
Quantum solids S75
Quantum teleportation S71
Quantum wells S77
Quantum wires S77
Quark matter S72
Quark models S72
Quark-gluon plasma S72
Quarks S72
Quasars S79
Qubits S71
Radiation chemistry S38

Radiation effects
- chemical S38
- electronics S46
- instruments S46
- materials S36
- physicochemical S38
- refractories S36

Radiation instruments S46
Radiation physics S73
Radiation protection standards S61
Radiation shielding (excluding neutrons) S73
Radiation sources S07
Radiation transport (excluding neutrons) S73
Radiative transitions S74
Radio galaxies S79
Radio telescopes S79
Radioactivation analysis S37

Radioactive contaminants
air S54
aquatic ecosystems S54
ecological effects S11, S54
food chains S54
health effects S11, S63
waste disposal S12, S54
Radioactive decay S73

Radioactive effluents
air S54
nuclear reactors S22
soil S54
water S54
Radioactive isotope production S07, S11, S38

Radioactive materials S11
chemistry See also S38
handling See also S42
safeguards See also S98
shipping containers See also S42
transport See also S11

Radioactive waste disposal S12
economics See also S11
environmental aspects See also S12
health and safety See also S11

Radioactive wastes
decontamination S12
disposal S12
management S12
policy S29
processing S12
storage (interim) S11
storage (ultimate) S12
transport S11

Radioactivity
environmental S54
physics S73
Radiochemical analytical procedures S37
Radiochemistry S38

Radiography S37
biomedical S62
Radioimmunoassay S62

Radioisotope
production S38
uses S07
Radiolysis S38
Radiometric analysis S37, S54
Radiometry S37

Radionuclide effects S63
ecological See also S54
environmental See also S54

Radionuclide kinetics S63
food chains S54

Radionuclide migration
air S54
fuel cycle S11
geological materials S12
soil S54
water S54
Radiopharmaceuticals S62
Rankine cycle S33, S42
Reactor safety S22
Reactors
bioreactors S09
licensing and regulation S21
nuclear S22
Reclamation
land S54
water S54
Recreational facilities
energy consumption S32
Recycling
conservation aspects S32
economics S32
environmental aspects S54
policy S29
Refining
petroleum S02
shale oil S04
Refractory materials S36
Refuse-derived fuels S20
Regge formalism S72
Regge models S72
Regulations S29
biomass fuels See also S09
coal industry See also S01
dams See also S13
ergy storage See also S25
fossil-fueled power plants See also S20
geothermal energy See also S15
hydrogen fuel See also S08
hydropower plants See also S13
natural gas industry See also S03
nuclear fuels See also S11
nuclear-powered ships See also S21
oil shale industry See also S04
petroleum industry See also S02
power transmission and distribution See also S24
solar energy See also S14
synthetic fuels See also S10
tar sands industry See also S04
tidal power See also S16
wave power See also S16
wind power See also S17
Relativistic wave equation S72
Relativity, general theory S71
Relict radiation S79
Remedial action S11, S54
Renewable energy sources policy S29
Reprocessing
environmental aspects S11
spent fuels S11
Research and test reactors S21

Reserves
coal S01
environmental aspects S11
natural gas S03
oil sands S04
oil shales S04
petroleum S02
tar sands S04
thorium ores S11
uranium ores S11

Reservoir engineering
oil shales S04
petroleum S02

Reservoir performance
geothermal S15

Reservoir rock
drilling oil shales S04
géology oil shales S04
mechanical properties S36
petroleum S02

Reservoir stimulation
geothermal engineering S15

Resources
biomass S09
géothermal S15, S29
hydro energy S13
solar energy S14, S29
tidal power S16, S29
wave power S16, S29
wind energy S17, S29

Retrofitting
buildings S32
power plants S20
Revegetation S54
Reversed-field pinch S70
Risk assessment studies S29, S54
Risk nuclear reactor accidents S22

Roads and streets S32
land use See also S54
pollution See also S54

Robotics S32, S99

Rock bursts
coal mining S01
Rock mechanics S36, S58
Rock-water-gas interactions S15

Rotary engines
automobile S33

Rutherford scattering S71, S73
chemical analysis S37
S-matrix theory S72
SQUID devices S75
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safeguards</td>
<td>S98</td>
</tr>
<tr>
<td>Safety</td>
<td></td>
</tr>
<tr>
<td>biomass fuels</td>
<td>S09</td>
</tr>
<tr>
<td>coal industry</td>
<td>S01</td>
</tr>
<tr>
<td>energy storage</td>
<td>S25</td>
</tr>
<tr>
<td>fossil-fueled power plants</td>
<td>S20</td>
</tr>
<tr>
<td>geothermal engineering</td>
<td>S15</td>
</tr>
<tr>
<td>hydro energy</td>
<td>S13</td>
</tr>
<tr>
<td>hydrogen</td>
<td>S08</td>
</tr>
<tr>
<td>natural gas industry</td>
<td>S03</td>
</tr>
<tr>
<td>nuclear fuels</td>
<td>S11</td>
</tr>
<tr>
<td>nuclear reactor</td>
<td>S22</td>
</tr>
<tr>
<td>oil shale industry</td>
<td>S04</td>
</tr>
<tr>
<td>petroleum industry</td>
<td>S02</td>
</tr>
<tr>
<td>power transmission and distribution</td>
<td>S24</td>
</tr>
<tr>
<td>radiation sources</td>
<td>S07</td>
</tr>
<tr>
<td>radioisotopes</td>
<td>S07</td>
</tr>
<tr>
<td>solar energy</td>
<td>S14</td>
</tr>
<tr>
<td>synthetic fuels</td>
<td>S10</td>
</tr>
<tr>
<td>tar sand industry</td>
<td>S04</td>
</tr>
<tr>
<td>tidal power</td>
<td>S16</td>
</tr>
<tr>
<td>wave power</td>
<td>S16</td>
</tr>
<tr>
<td>wind energy</td>
<td>S17</td>
</tr>
<tr>
<td>Salinity gradient power systems</td>
<td>S14</td>
</tr>
<tr>
<td>Sanitary landfills</td>
<td>S54</td>
</tr>
<tr>
<td>landfill gas recovery</td>
<td>S09</td>
</tr>
<tr>
<td>Scattering matrices</td>
<td>S72</td>
</tr>
<tr>
<td>Scattering theory</td>
<td>S71</td>
</tr>
<tr>
<td>relativistic</td>
<td>S72</td>
</tr>
<tr>
<td>Schwinger source theory</td>
<td>S72</td>
</tr>
<tr>
<td>Seawater</td>
<td></td>
</tr>
<tr>
<td>uranium recovery</td>
<td>S11</td>
</tr>
<tr>
<td>Seismicity</td>
<td>S58</td>
</tr>
<tr>
<td>dam sites</td>
<td>S13</td>
</tr>
<tr>
<td>Seismology</td>
<td></td>
</tr>
<tr>
<td>earthquake prediction</td>
<td>S58</td>
</tr>
<tr>
<td>geothermal surveys</td>
<td>S15</td>
</tr>
<tr>
<td>Separation procedures</td>
<td>S37</td>
</tr>
<tr>
<td>Sewer systems</td>
<td>S32</td>
</tr>
<tr>
<td>Shale oil</td>
<td>S04</td>
</tr>
<tr>
<td>biological effects</td>
<td>S63</td>
</tr>
<tr>
<td>energy planning and policy</td>
<td>S29</td>
</tr>
<tr>
<td>environmental aspects</td>
<td>S54</td>
</tr>
<tr>
<td>legislation</td>
<td>S29</td>
</tr>
<tr>
<td>regulations</td>
<td>S29</td>
</tr>
<tr>
<td>site surveys</td>
<td>S54</td>
</tr>
<tr>
<td>waste management</td>
<td>S54</td>
</tr>
<tr>
<td>Shell models</td>
<td>S73</td>
</tr>
<tr>
<td>Shielding (fusion)</td>
<td>S70</td>
</tr>
<tr>
<td>Ship propulsion reactors</td>
<td>S21</td>
</tr>
<tr>
<td>Ship site surveys</td>
<td>S54</td>
</tr>
<tr>
<td>nuclear-powered</td>
<td>S21</td>
</tr>
<tr>
<td>Shipping containers</td>
<td></td>
</tr>
</tbody>
</table>
radioactive materials S42
safety S42
Simulations S97

Site surveys thermionic conversion S14
coalmines See also S01
fossil-fueled power plants See also S20
géothermique fields See also S15
meteorology See also S54
natural gas fields See also S03
nuclear reactors See also S22
oil fields See also S02
soil mechanics See also S54
tar sands See also S04
thermal power plants See also S20
tidal power plants See also S16
wind power See also S17

Slurry pipelines
coal S01

Socioeconomic aspects
nuclear power S29

Sociology agriculture S14
energy policy S29, S32
Software S97
Soil chemistry S54

Soil contamination
composition S54
monitoring chemical S54
monitoring radioactive S54
radiometric techniques S54
regulations and implementation S29
remediation S11
removal S54
Solar absorbers S14
Solar air conditioning S14
Solar cells S14
Solar collectors S14
Solar concentrators S14
Solar cooking S14
Solar drying S14

Solar energy S14
environmental aspects See also S54
photosynthesis See also S09
policy See also S29
Solar heat engines S14
Solar heating S14
Solar power systems S14
Solar radiation S79
Solar sea power systems S14
Solar space heating S14
Solar system S79
Solar thermal power systems S14

Solid wastes
disposal S54
environmental aspects S54
fuels S09
pollution control S54
Solid-state physics S75
Solid-state plasma S75
Solid-state properties S36
Solid-state techniques S75
Solvated extractions S38

Solvent extraction
spent fuels S11

Space heating S32
solar S14
Space plasma phenomena S79
Space power reactors S21
Space power systems S24
Space propulsion reactors S21
Space vehicles S79
Spacecrafts S79
Spark-ignition engines S33
Spectrochemical analysis S37
Spectrometers S46
Spectroscopic analysis S37
Spent fuels S11
Spontaneous fission S73
Sputtering S75
Stable isotopes S37
Standard model S72
Star clusters S79
Stark effect S74
State government research S29
Statistical physics S71
Statistics S97

Steam-iron process
hydrogen production S08
Stellar radiation S79
Stellar systems S79
Stellarators S70
Stirling cycle S33, S42

Stockpiles
coal S01
petroleum S02
Storage facilities S11, S12, S42
Storage rings S43

Strata control
coal mining S01
proliferation S98
Street lighting systems S32
String theory S72
Strong interaction models S72
Structures underground S42
Supercomputers S97
Superconducting S36, S75
power transmission S24
Superconductivity S36, S75
Superfluidity S75
Terminology (standardised) S96

Test methods
 materials S42
Test reactors S21

Thermal effluents S54
 diffusion See also S54
 fossil-fueled power plants See also S20
Thermal physics S71

Thermal pollution
 biological effects S63
 diffusion S54
 environmental aspects S54
 nuclear reactors S22

Thermionic conversion
 solar energy S14
Thermionic converters S30
Thermionic emission S75

Thermochemical conversion
 solar energy S14
Thermochemical processes S09

Thermodynamic cycles S42
 automobiles See also S33
 fusion energy See also S70
Thermodynamic properties S36
Thermodynamics S71
Thermoelectric effect S75
Thermoelectric generators S30
Thermonuclear devices (general) S70
Thermonuclear fuel injection S70
Thermonuclear power plants S70
Thermonuclear reactions S70
Thermonuclear reactor materials S70
Thorium ores S11

Tidal power S16
 environmental surveys See also S54
 policy See also S29
 site surveys See also S54
 storage facilities See also S42
Titration S37
Tokamak devices S70

Total energy systems S29
 solar energy S14
Tower focus power systems S14

Tracer techniques
 advances in S38
 agriculture S60
 air S54
 animal husbandry S60
 behavior S60
 biochemistry S60
 coal S01
 cytology S60
 embryology S60
 food technology S60
genetics S60
horticulture S60
irradiation effects S60
medicine S62
metabolic studies S60
metabolism S60
microbiology S60
molecular biology S60
morphology S60
pathology S60
pest control S60
photosynthesis S60
physiology S60
preservation S60
psychology S60
public health S60
soils S54
technology advancement S38
vaccine sterilization S60
water S60

Trade
biomass fuels S09
coil S11
foreign S29
hydrogen fuel S08
natural gas S03
nuclear fuels S11
petroleum S02
shale oil S04
synthetic fuels S10
Training and education S96
Training reactors S21

Transport
biomass S09
coil S01
calmines S01
environmental S54
facilities S42
hydrogen S08
natural gas S03
oil shales S04
petroleum S02
radioactive materials S11
radioactive wastes S11
synthetic fuels S10
tar sands S04
Transport theory S73
Transportation S32
Tribology S32
Triton S73
Tunnels S01

Turbines
automobile S33
wind S17
Unconventional energy sources
policy S29
Underground engineering S42

Underground mining
coal S01
Unified models S72
Universe S79

Uranium
depleted S12
mining S11
reserves S11

Uranium 235
centrifugation separation S11
gaseous diffusion separation S11
laser isotope separation S11

Uranium deposits S11
Uranium enrichment S11
Uranium minerals S11
Uranium ores S11
Uranium recovery S11
Vaccine sterilization S60
Vacuum systems (fusion) S70

Vegetable oil fuels S09

Ventilation
buildings S32
coalmines S01
houses S54
indoor air pollution control S54

Verification
arms control S98

Vertebrates
baseline ecology S54
Veterinary science S60
Volcanology S58
Voltametry S37
Waste conversion to fuel S09
Waste energy policy S29

Waste fuels
power plants S20

Waste heat utilization
energy conservation S32
policy S29

Waste management
biomass fuels S08
coal industry S01
fossil-fueled power plants S20
geothermal energy S15
hydrogen fuel S08
natural gas industry S03
nuclear fuels S12
oil shale industry S04
petroleum industry S02
solid wastes S54
synthetic fuels (S10)
tar sand industry (S04)
Waste oil reclamation (S02)

Waste recycling
- industrial (S32)
- municipal (S32)
- power generation (S20)

Water chemistry (S54)

Water gas processes
- hydrogen production (S08)

Water hearing
- energy conservation (S32)
- solar domestic (S14)

Water pollution (S54)
- abatement and control coal
 See also (S01)
- coal use and production
 See also (S01)
- geothermal energy
 See also (S15)
- legislation
 See also (S29)
- nuclear fuels
 See also (S11)
- nuclear reactors
 See also (S22)
- oil shale
 See also (S04)
- petroleum
 See also (S02)
- petroleum use and production
 See also (S02)
- radioactive effluents
 See also (S22)
- regulations
 See also (S29)
- tar sand use and production
 See also (S04)
- tar sands
 See also (S04)
- thermal
 See also (S20, S22)

Water resources (S29)
- hydroelectric power
 (S13, S54)

Water treatment plants (S32)

Water wave energy conversion (S16)

Water-rock-gas interactions (S15)

Wave energy converters (S16)

Wave power (S16)

Weak interaction models (S72)

Weatherization (S32)
- policy
 See also (S29)
- social impacts
 See also (S29)

Well logging
- geothermal exploration (S15)
- instrumentation (S47)

Wind energy (S17)

Wind power (S17)
- applications
 See also (S17, S29)
- availability (climatology)
 See also (S54)
- environmental aspects
 See also (S54)
- policy
 See also (S29)
- regulations
 See also (S29)
- site surveys
 See also (S54)

Wind turbines (S17)

Winterization (S32)

Wood
fuels S09
policy S29
production S09

Wood energy
policy S29

Wood-burning appliances
environmental aspects S54
X-ray fluorescence analysis S37
X-ray telescopes S79
Zeeman effect S74